14

ASPNET 3.5 Essentials

If you need information on
New Features in ASP.NET 3.5

See page:

Exploring a Sample ASP.NET 3.5 Web Application

Chapter 14

Since the release of .NET Framework 1.0, Microsoft has put in consistent effort in developing and improving
ASP.NET, which is a part of NET Framework for building rich Web applications. This first release brought a
radical change over the older Microsoft technology to build websites using a server-side script engine, called
Active Server Pages (ASP). Despite many advantages of ASP.NET over ASP, new programumers found it difficult
to start with ASP.NET because of its complexity and the knowledge needed to build applications.

After the initial release in 2002, another version of NET Framework named .NET 1.1 was released with Visual
Studio 2003. Most people considered this release as a mere service pack for the initial release, though it also had
new improvements in both the framework and the development environment.

Later in November 2005, Microsoft released Visual Studio 2005, which integrated ASP.NET 2.0. Again, Microsoft
made drastic improvements in this version and reduced the complexity of the initial version. This new version
had many new wizards and controls that reduced the amount of cede required in building applications, thus
increasing productivity.

Now, Microsoft’s latest release is ASP.NET 3.5, which includes new features for creating Web-based
applications.

New Features in ASP.NET 3.5

ASP.NET 3.5 was released along with Visual Studio 2008 on November 19, 2007. ASP.NET 3.5 uses the same
engine as that of ASP.NET 2.0, with some additional features. ASP.NET 3.5 has simplified the process of
building websites, making it easier than ever, Now, let's discuss the following new features added to
ASP NET 3.5:

0O ASP.NET AJAX Support

The ListView Control

The DataPager Control

Support for WCF Services

WCF Support for RSS, JSON and Partial Trust

Support for Nested Master Pages at Design Time

Merge Tool in ASP.NET 3.5

Improved Support for JavaScript Debugging

O Support for Microsoft Office Applications

ASP.NET AJAX Support

In ASP.NET 2.0, ASP.NET AJAX was used as an extension and you had to download the extension and install it
in Visual Studio to reap the benefits of ASP.NET AJAX. However, in ASP.NET 3.5, NET Framework comes with
ASP.NET AJAX integration, making the process of building interfaces easier.

[y i Wi Wi S =iy =)

The integration between the WebParts and UpdatePanel controls has become much smoother in
ASP.NET 3.5. You can also add ASP.NET AJAX control extenders to the Toolbox in Visual Studio 2008 to
extend the functionalities of the different ASP.NET controls.

The ListView Control

The new data control, ListView, added to ASP.NET 3.5 contains features of the Gri dView, DataGrid,
Repeater, and similar list controls available in ASP.NET 2.0. Using the ListView control, you can insert or
delete a page, or edit and sort data. To do so, the ListView control uses the DataPager control. However, one
of the most notable features of the ListView control is its great flexibility over the markup generated as you get
full control on how the data is displayed. The ListView control is useful to display data in any repeating
structure, similar to the Datalist and Repeater controls. The ListView control also consists of a rich set of
templates that you can use to develop attractive websites.

The DataPager Contro/

As the ListView control does not have a built-in support for paging, the Data?ager control is used to support
paging for this control. You can place the DataPager control anywhere on a Web Form.

564

ASP.NET 3.5 Essentials

You can do paging with controls that support the DataPager control, such as a ListView control. The
DataPager control is used to page through the data that is displayed by the control, which implements the
IPageableItemContainer interface.

Support for WCF Services

In Visual Studio, you can add both ASP.NET (.asmx files) and WCF (. svc files) Web services to a project.
Client applications using managed code typically access these Web services through a proxy class. For example,
when you use the Add Web Reference dialog box, the applications with managed code use the proxy class
generated by Visual Studio. Similarly, AJAX applications use Web services from the browser by using proxy
classes automatically generated in client script.

WCF Support for RSS, JSON, and Partial Trust

Using WCF, you can now build Web services and expose them with the help of Internet protocols, such as
Simple Object Access Protocol (SOAP), Really Simple Syndication (RSS), Java Script Object Notation (JSON),
Plain Old XML (POX), and many more. WCF makes creating endpoints easier irrespective of whether you are
building an AJAX application that uses JSON, providing syndication of your data through RSS, or building a
standard SOAP Web service. Now, .NET Framework 3.5 supports the building of Web services in partial-trust
situations similar to a typical shared-hosting environment.

Support for Nested Master Pages at Design Time

Master page support was one of the key features introduced with ASP.NET 2.0 that enables a developer to
provide consistent look and feel throughout a website.

The problem with ASP.NET 2.0 was that Web pages based on nested master pages cannot be edited at design
time. However, ASP.NET 3.5 solves this problem. You can now edit nested master pages at design time using
the Visual Web Designer,

Merge Tool in ASP.NET 3.5

ASP.NET 3.5 introduces a new Merge tool called Aspnet_merge.exe, which allows you to combine and
manage assemblies created by the ASP.NET precompilation tool (Aspne t_compiler.exe}. Visual Studio 2008
has the Merge tool as an add-on. This tool creates a single assembly for the entire website, for each website
folder, or for just the files that make up the website user interface (UT), which includes Web pages and controls.

Improved Support for JavaScript Debugging
Another important JavaScript feature included in Visual Studio 2008 is the improved support for JavaScript
debugging that has made the building of AJAX applications a lot easier. Earlier in Visual Studio 2005, you had to
first run your ASP.NET Web forms to set JavaScript breakpoints-on them. However, setting JavaScript
breakpoints is much easier in Visual Studio 2008. All you need to do is to set the breakpoints directly into the
server-side . aspx and .master source files, as shown in Figure 14.1:

Figure 14.1: JavaScript Debugging
565

Chapter 14

When you close the project, Visual Studio 2008 saves, by default, any breakpoint set in JavaScript. When you
reopen the project, you will find these breakpoints still enabled.

After a quick overview of the new features of ASP.NET 3.5, let's now see the various types of ASP.NET websites.

Support for Microsoft Office 2007 Applications

ASP.NET 3.5 provides developers with support for building applications that use Microsoft Office 2003 as well
as Microsoft Office 2007, as shown in Figure 14.2:

et ypes Torpider RER:
T T T s msated e)
L o | acel 2007 Aeidom 47 Enced 2007 Template]
Ditabrre, Prosects 17T Exedd 2007 Workbock i WrloPath M7 Add-in z
» OtherLanguagts A inioPwh AT Formn Tempiate ¥ Outrook 2007 Add.in i
a Visugl Benc !

1T PoverPonnt 2000 ddh i

Vendams 2 Project 207 Addin

3% SharePom 2007 Stene Factung Woridho
7 Word 2067 ddd-m

o5 Wed 2007 Termgtate

e 2003 Templace

M Cutook 2000 sdan

Heroject XOI 8dd-n

o 203 2l

. M Ward 2002 Gocurment H)iora 203 Tempiste

L W Tempainen R N
s progect for Cresting » mumaged code sdon tor Excel M7, LNET Framework 351

Hame Encelieind

Locamzcn,

oy etog e T

“otution Heme Esgeldetdin

Figure 14.2: Microsoft Office Templates
It supports Ul style, including the Ribbon Bar, Ribbon Status Bar, and Mini-toolbar of Microsoft Office

applications.

The ASP.NET Life Cycle

The ASP.NET life cycle shows you how ASP.NET processes pages to produce dynamic output. The life cycle also
shows you how the application and individual pages are instantiated and processed, and how ASP.NET
compiles the pages dynamically. We look at these aspects in detail in the following heads:

O ASP.NET Application Life Cycle on 1I5 7.0

0 ASP.NET Page Life Cycle

Life Cycle of ASP.NET Applications on IIS 7.0

In this section, we take a look at the complete application life cycle of ASP.NET applications running on
integrated mode of IIS 7.0 in addition to using .NET Framework 3.0 or advanced versions. [IS 7.0 also supports
Classic mode, which behaves similar to any ASP.NET application running in IIS 6.0.

In an integrated mode of IIS 7.0, application resource request process is similar to IIS 6.0. However, In IIS 7.0
three new events such as MapRequestHandler, LogRequest, and PostLogRequest were raised during
request process in addition to events in IS 6.0. Additionally, IIS 7.0 uses a unified request-processing pipeline
for the entire application resource request which was not there in II5 6.0.

Note: IIS 6.0 uses two separate pipelines for processing an application resource request. One pipeline is for un-
managed code filters and extensions; other is for managed code components.

The following are the benefits of using the integrated pipeline in IIS 7.0:
O Raises all the events of the Ht tpApplication class, to enable ASP.NET modules in [15 7.0.

QO Enables configuration of both managed cede and unmanaged code modules. In addition, using the
integrated pipeline, we can enable or disable the managed code modules for all requests, even if the user
requests for an ASP.NET Web page.

ASP.NET 1.5 Essontials

O Enables calling of the managed code modules at any stage in the pipeline, such as prior to the processing of
a user request, or after the request is processed, or in the middle of Processing a user request.

U Enables in registering and then either enabling or disabling modules by using the Web . config file.
Table 14.1 lists the different phases of the life cycle of ASP.NET applications on IIS 7.0 Integrated mode:

Table 14.1: Phases of the Life Cycle of ASP.NET Applications on IIS 7.0 Integrated Mode

i

In this phase, application resource is requested by the user on the Web
server. This request passes through the unified pipeline that calls the
ASP.NET modules. Now, even if a page has . htm extension and is not
explicitly mapped with ASP.NET, still this request can take benefits of
ASP.NET functions such as authentication and authorization process,
which are embedded in managed-code. Earlier in I1S/6.0 these processes
require manyal configuration due to two separate pipelines.

User requests for an application resource

The integrated request-processing pipeline When a request for an application resource is received for the first time,
receives the first user request. an application domain is created by using the object of the
ApplicationManager class. The application domain is a process that
isolates the applications from each other and enables the processing of
the user requests. In this phase, the information about an application
can also be accessed when the HostingEnvironment object is created
within the application domain.

For each user request, response objects are In this phase, response objects, such as EttpContext, HttpRequest,
created and HttpResponse are created. The HttpContext class has objects,
such as the HttpRequest and HttpResponse objects. These objects
are valid only to the current user request. Now, the HttpRequest
object hoids information about the current request, The Bt tpRespense
object holds information sent to the user such as cookies and the final
output.

An object of the HttpApplication class is In this phase, the application is started when an object of the
created and allocated to the request Httpapplication class is created, However, if a Global.asax file
exists, then an object of the Global.asax class is created instead of
the Httphpplication class. The Global . asax class derives from the
BttpApplicatiocn class and represents an ASP.NET application.

The modules that need to be invoked depend on the parent
application’s managed-code modules. In addition, it also depends on
the modules defined in the Web . config file. You can add or remove
modules by specifying the module names in the Web.config file
within the modules element of the system.webServer section.

The HttpApplication class processes the The HttpApplication class performs the following tasks to process
user request. the user request:
1. Validates the user request to confirm that it does not contain any
malicious markup.
2. Performs URL mapping to confirm whether any URLs are specified
in the Ur 1MappingsSect ion section of the Web. config file,
3. Invokes the following events and methods in the same order as
displayed:
. BeginRequest
. AuthenticateReguest
L PostAuthenticateRequest
. AuthorizeRequest
. PostAuthorizeRequest
. ResolveRequestCache
. PostResclveRequestCache

567

Chapter 14

. MapRequestHandler

. PostMapRequestHandler

- AcquireRequestState

. PostAcquireRequestState
. PreRequestHandlerExecute

. Calls the ProcessReguest method of the
THttpHandler class for the request

. PostRequestHandlerExecute

. ReleaseRequestState

L] PestReleaseRequestState

* Performs response filtering only if the Filter property
for the Ht.t pResponse class is defined.

. UpdateRequestCache

. PostUpdateReguestCache

LogRequest

. PostLogRequest

L4 EndRequest

. PreSendRequestHeaders

L PreSendRequestContent

Life Cycle of an ASP.NET Web Page

When a user requests for an ASP.NET Web page, the page passes through a number of stages, which are
collectively called the life cycle of an ASP.NET Web page. For example, the life cycle of a page begins when a
user requests for a Web page and ends when the page is rendered completely to the browser. When you want a
specific action to take place at a particular stage of a page, you should completely understand the page life cycle.
Moreover, if you are creating any custom controls for your project, you should have a thorough knowledge of
the page life cycle as a control’s life cycle depends on the page’s life cycle.

Let’s now understand about the different stages involved in a page life cycle.

Different Stages of ASP.NET Page

In general, a Web page passes through the stages mentioned in Table 14.2, which comprises of 8 stages. Table
14.2 lists the general page life cycle stages of an ASP.NET Web page:

Table 14.2: Different Stages of an ASP.NET Web Page

Page request Refers that when a user requests for a Web page, only after that the page life cycle begins. The
request for the page begins before the start of the page life cycle. When a user requests for a page
for the first time, ASP.NET ascertains whether the request is new or an old one. If request is a new
one then the page is compiled and executed. However, if the request is an old one then a cached
copy of the page is sent without executing the page.

Start Refers that at this stage, the Request and Response properties of the page are configured. The
page also ascertains if the request is an old one or a new request by using the IsPostBack
property. In additior, at this stage, the page’s UICul ture property is also configured.

Page initialization Refers that at this stage, each control on the page is assigned a unique ID by setting the UniqueID
property. At this stage, if there are any themes, they are added to the page. If the request is an old
one, then the postback data is not loaded and control property values still need to be restored to the
view state values.

v -

ASP.NET 3.5 Essentials

Table 14.2: Different Stages of an ASP.NET Web Page

RS
Load Refers that at this stage, if the current request is an old one, the properties of the controls on the
page are loaded with data from the view state and control state. !
Validation Refers that at this stage, the validation controls used on the page invoke the Validate method.
Postback event Refers that if the request made is an old one, then any event handlers are invoked.
handling
Rendering Refers that prior to rendering the page, the view state for the page and for all the controls on the

page are saved. While rendering the page, it invokes the Render method for each control on the
page and writes the output of the rendering stage to the OutputStream object of the page's
Response property.

Unload Refers that at this stage the Response and Request properties of the page are unloaded and any
cleanup operation, if required, is performed.

ASP.NET Pages Life Cycle Events

At each stage of the life cycle of a page, the page raises some events that you can handle by running your own
code. For handling control events, you bind the event handler to the specified event, using declarative attributes,
such as onclick or handle within code.

ASP.NET Web pages also support automatic event wire-up, which means that ASP.NET searches for methods
that have particular names and automatically executes those methods when certain events are raised. If the
AutcEventWireup attribute of the @ Page directive is True, page events are automatically bound to the
methods used to handle these events. The following are the most common page events:

O Preinit

a Init
O Load
Preinit

Preinit is the first event that occurs during the page life cycle. It is used to check the IsPostBack property of the
page to determine whether the page is being processed for the first time. It also creates or recreates dynamic
controls. Tt sets the Theme property and master page dynamically. In addition, it gets and sets profile property
values.

Init
This event is raised after the initialization of all the controls and after any skin settings have been applied. It is
used to read or initialize control properties.

Load
The OnLoad event methed is called to set the properties of controls and establish database connections. The
Page class calls the OnLoad event method on the Web page and then recursively does the same for each child
control until the page and all controls are loaded.

{NoTe 8

We have explained some of the main events. However, ASP.NET Life Cycle also supports these events such as
InitComplete, Preload, LoadComplete, PreRender, SaveStateComplete, Render, and Upload.

After understanding the concepts of ASP.NET 3.5, let’s move on to explore the Microsoft Visual Studio 2008 IDE.
It provides a single environment for developing all types of .NET applications and provides many options and
rich features to create interactive Web applications by using ASP.NET 3.5.

569

Chapter 14

Overview of Visual Studio 2008

Microsoft Visual Studio is an Integrated Development Environment (IDE) provided by Microsoft to create and
develop Windows-based, Web-based, console-based, and mobile-based applications in .NET Framework. These
applications might be created by using different languages, such as Visual Basic, C#, and Visual C++. You can
use Notepad as a text editor to create these applications. For this, you need a compiler that could convert the
programming language into machine language. Now, you might be wondering that if a Notepad can create ali
these applications, why do we need Visual Studio as an editor. Building applications by using Notepad takes
more time than taken while building the same applications in Visual Studio. This is because Mitrosoft Visual
Studio provides various development tools to design and create the applications, as compared to a Notepad. For
example, you need to memnorize all the language syntax if you are using a Notepad. In case of Visual Studio, you
do not need to remember the syntax; you need to type the first few letters of a command and Visual Studio
would prompt you with the available options for the command using IntelliSense.

The following are some of the benefits of using Visual Studio 2008:

Helps in minimizing the development time

Simplifies the process of testing applications

Provides different toolsets for integrating graphic designers into the overall development process

Supports multiple versions of the .NET Framework

Enhances data retrieval and data binding

Inspects code to find sections of code that need refactoring

Provides support for Web, mobile, client, Vista, and Office application development

Integrates with the NET Framework 3.5

Now, let’s explore Visual Studio 2008 and its new features.

[i I = R o R o Y B w Y

New Features in Visual Studio 2008

Visual Studio 2008 is an integrated development environment designed for writing, compiling, and debugging
the code in a much easier way than Visual Studio 2005, It contains a complete set of development tools for
building ASP.NET Web applications, Web services, desktop applications, and mobile applications.

The followings are some of the new features and enhancements made in Visual Studio 2008:
Support for multi-targeting
Support for ASP.NET Asynchronous JavaScript and XML (AJAX) and JavaScript IntelliSense

Support for Language Integrated Query (LINGQ)
Improved deployment

0O0COoOo0oOQ

Support for client application services
Support for reporting applications

0

Support for Multi-Targeting

570

In the previous versions of Visual Studio, you were required to install the latest NET Framework version. For
example, for using Visual Studio 2005, you also had to install .NET Framework 2.0. Installing a new .NET
Framework version may provide additional functionalities to your project but at the same time, it may also add
new .NET Framework dependencies. These dependencies will prevent your project from running on systems
where they have already been run. This may create a problem in case your project needs backward
compatibility.

However, Visual Studio 2008 resolves this issue by letting you target the specific NET Framework version you
want for your project by selecting it in the Framework Version box in the upper-right corer of the New Project
dialog box, as shown in Figure 14.3:

ASP.NET 3.5 Essentials

ates
B vimdewa Forms Applcanon
AR Libtary

HET Fraosenodh 5.0

:'?0-\ i B Visun WebGad Librany, :
Catabase 31 RSP HET Web Apphoson S
Reportmg ;ismm;m,\pm :
Sabreetrght St gt Caazs Libraey
Tent AP HET 35 Eatenson: 'Web Apphaation
Hrsusd WebiGu: M AP NET wiek Senvice Applcatian
wCF FPF Aapbcaton
Woriow f SO Y——

<

M Concole Apphieation

Sobtien Mame: WebAppicauonl | ACenate drettorny b sstubon

Figure 14.3: New Project Dialog Box
When you upgrade Visual Studio 2005 projects to Visual Studio 2008, these projects still continue to target NET

Framework 2.0. You can change the target from NET Framework 2.0 to either .NET Framework 3.0 or NET
Framework 3.5 in order to take advantage of new features available in the newer versions of NET Framework.

Support for ASP.NET AJAX and JavaScript Intellisense

One of the new features that developers find interesting in Visual Studio 2008 is its in-built IntelliSense support
for JavaScript and ASP.NET AJAX scripting. This has made building applications using JavaScript and AJAX
considerably easier. If you doubleclick the HTML Button control in the Design view, this will automatically
create a ¢1ick event for the button and a basic skeleton for the JavaScript function. Figure 14.4 displays built-in
JavaScript IntelliSense:

4 Rures e Chele e e synchearre wews,

T

Figure 14.4: Displaying built-in JavaScript IntelliSense
JavaScript IntelliSense is also supported for referring external script files that use eXtensible Markup Language
{XML) code comments. These code comments describe the summary, parameter, and return details of the client
script. ASP.NET AJAX also uses XML code comments for providing IntelliSense of ASP.NET AJAX types and
members.

Support for Language Integrated Query
LINQ, one of the new features of Visual Studio 2008, extends powerful query capabilities into the language
syntax. It adds native data querying capabilities to NET languages using syntax similar to SQL. It can support
any kind of data source. It also introduces a set of new assemblies for enabling the use of LINQ with collections,
SQL databases, and XML documents.

571

Chapter 14

Improved Deployment

Deployment in Visual Studio 2008 has improved with the enhancement of Windows Installer deployment. It is a
deployment technology which enables you to create installer packages to be distributed to users. In this case, for
installing the application, the user needs to run the setup file which opens a wizard to install the application.
Windows Installer deployment has the following enhancements and has been updated for Windows Vista and
for the latest NET Framework versions:

Q Windows Installer has been updated to ensure that it gets installed on Windows Vista smoathly even when
it is running under UAC

O .NET Framework Launch Condition helps in supporting targeting of applications for the new NET
Framework 3.0 and 3.5 versions

Support for Client Application Services

Client application services are newly introduced in .NET Framework 3.5. These services enable Windows-based
applications which include both Windows Forms and WPF applications to easily access the ASP.NET login,
roles, and profile services. These services also allow you to authenticate users and retrieve user roles and
application settings from a shared server. For example, by using these services, you can authenticate a user,
determine the roles of these authenticated users, and finally store and access application settings located on the
server.

You can include client application services by configuring client service providers in the Visual Studio Project
Designer or in your application configuration file. These providers connect to the Web extensibility model for
accessing the Web services through existing NET Framework login, roles, and settings APls. These services also
support occasional connectivity by storing and retrieving the user data from the local data cache when the
application goes offline.

Support for Reporting Applications

572

A reporting application is used to prepare reports. Visual Studio 2008 supports many new reporting features and
enhancements which are as follows:

O New Report Projects—Visual Studio 2008 provides two new project templates for creating reporting
applications. The first template is the Reports Application template, which is available on the New Project
dialog box and the second template is the ASP.NET Reports Web Site template, which is available on the
New Web Site dialog box. When you create a new Reports Application project, Visual Studio provides a
report (.rdlc)and aform (.vb/ . cs) with a ReportViewer control bound to the report.

O Report Wizard—Visual Studio 2008 provides a Report Wizard, which guides you through a number of
steps to create a basic report. After the wizard is finished, you can make enhancements to the report by
using Report Designer.

QO Expression Editor Enhancement — The Expression Editor provides sample expressions that you can directly
use in your report or customize it according to your requirement.

O ReportViewer Printing— When you configure the ASP.NET ReportViewer contro! for local processing, the
RSClientPrint control becomes available. Using this, you can print reports that have been processed by the
ReportViewer control and are not dependent on a report server.

0 PDF Compression--The ReportViewer controls can now compress reports that have been rendered or
exported to the PDF format.

Now, let’s discuss Visual Studio 2008 Service Pack 1 (SP1) and NET Framework 3.5 SP1 as both

are required to work with all the new technologies introduced in ASP.NET 3.5. The best way to grasp the Visual

Studio 2008 IDE is to start working on a sample Web application and a sample website. Now, let’s start with

sample Web application first.

ASP.NET 3.5 Essentials

Exploring a Sample ASP.NET 3.5 Web Application

In ASP.NET, you can create both Web applications and websites. Now, let's explore a Web application by
following these steps:

1. Open Microsoft Visual Studio 2008.
2. Click the File-»New-> Project option, as shown in

Figure 14.5:

Tooh Tew Anshae Windoe Hilp

[| ﬂm-& Coe Shik N
v el Shiebie-N

Lok Lppeat Dihtmaset. Pracdc ot abd Soturhty e
Thi, W Sea 1008 0% XHI0 2 - In ts eetetamung pemt Enc Lppea 11
tatks about beverages, scdvertiung Lhe tefirition of prevhone, -
W heim 22 Lk yirr ot wall be you use an cbfuscation
ASFUHF MV Prevics S md Faros Searing S psarbe

The, 4 & & oot st onine
the latest MVC. previews,

ER ey i Ciamenicr

Fhi, 04 Sap. Jal Q0400 2 - Kirl s sboud geners bpe

+riey, the VT MNETEr M RLang ity e 64, snd othe

Penc the Vaber s Ml

Thay, 08 Sap 2008 DISGN T - Chasck lazdzeasiy on the virues of

it rudrbic cod.

M btseeting Advan cuicans in V5 MR8 AT,

Thy, 3 Sap D009 2500 T - Tupvicl K revieves o o the
2008 591,

geting
ikt 20 kepnir fmaq Lanms Datt e d Wb Servion Weekd
Tua, 55 Aug 2000 1 J548 T - Craareiene of A Dot Serzes

Astpra, u new boal bt shppad 15 past of V5 2008 Sevice Pacr 1L

o % e T e P 4 e

Figure 14.5: Start Page of ASP.NET
The New Project dialog box appears (Figure 14.6).

3. Select the project type as Web under the Project types pane and ASP.NET Web Application
under the Templates pane (Figure 14.6).

4. Qlick the K button, as shown in Figure 14.6:

Project tywes:

3 Temphates:
! WCF il o inszaled tamplates i
! Worktiow i¢ LHASHNET Web Appiication M. ASPNET Web Service Appbcation ;
i Dambase Projects FRASP.MET AWK Serve Gyntrol 3% ASP.NET AJA Server Control Extender i
! 0":,;:";_9“ 450 MET Server Control HRWCE service Appheation .
: !
w.nda:; R Dynemic Drws Eraities Web fipphe. W Dynamic Dats Web Applic oo :
: e My Ternplates R
: St Device i i Search Onbine Tempiates . ‘A
; Otfice '
o Datanwse M
! Reporing ‘
: Sikverdight '
- Test
a WeE
: Wondlaw
Ve Ca s
B project for cresbing #n sppication with s Web wiee indactace LNET Famener 3577
* Name: Webdpplicatiani T)
! ot i R T T e
Sohtian: =] 3 Craste iractory for solution

Figure 14.6: New Project Dialog Box
It opens the Visual Studio 2008 IDE with the Default.aspx file, also known as the source file, as shown in
Figure 14.7:

573

Chapter 14

574

- [[
i ™ pblpphiationt - Micrarol Vsl Stod
| Fie Ede View Project Budd fubug Data Tooh Test Anatyze Window Help

1 . 5
I R R g I e N R R I 2T ti,foolbars
5
i
i
'''' |
|l
Tefsult.aspa.tE" 1L H
. PR P
CIDMTYEE huml PUSELIT "=/, WIL/DTD XMTHD 1.0 Transiciesal/rEW= MREipis .l ;;“""“ """"AW’“:""“] Qpragect) | 2
15 W WebAppication :
£- il Propéities :
3 od References i
4 pp Dats _dii Solution
s b .. Explorer
i _och 1
£ Y Defavir.aspc
ig Web.onlg
<Ay
: EAEZ* 3N
Y] T
EEZECTEEY
Eropertien
Window
* Color of al active links m the focument. 1

Figure 14.7: Visual Studio 2008 IDE

Toolbox—Contains a number of tabs and each tab contains a list of controls that can be dragged and used
on a Web Form. The Toolbox is docked on the left side of the Visual Studio 2008 IDE; however, if it is not
visible, you can access the Toolbox by selecting View->Toolbox from the menu bar or by pressing the
CTRL+ALT+X keys together to open it in the Visual Studio 2008 IDE.

Server Explorer— Displays a list of available servers from which data can be accessed through the network.
The Server Explorer window is viewed by selecting View>Server Explorer from the menu bar or by
pressing the CTRL+ALT+S key combination from the keyboard.

Code Editor Window —Helps you to recognize keywords and identifiers of the programming language. It
also checks syntax errors, incorrect initialization of variables, invalid declarations, and unrecognized calling
of procedures by highlighting them. You can access the Code editor window by double-clicking the control
or the Web Form or pressing the F7 key in the design mode. Code editor window also provides IntelliSense
feature, which provides you a list of options that help to write code easily and automatically completes the
code you are typing.

Toolbars —Provides developers with an easy access to the features of the Visual Studio 2008 IDE. The
Visual Studio 2008 IDE provides different toolbars for each categoty of tasks needed in the process of
developing an application. The Standard toolbar is the default visible toolbar, the other toolbars such as
Formatting and Build can be viewed by using the Customize option available on the Tools menu. Users
can customize this toolbar by adding and removing buttons from it.

Solution Explorer—Provides a conceptual overview of a project, which makes managing project elements
such as class and Web Forms, easier. The project appears in a tree view format, showing nodes and child
nodes. You can access the Solution Explorer window by selecting View->Solution Explorer from the menu
bar or by pressing the CTRL+ALT+L key combination from the keyboard.

Properties Window —Makes the task of setting properties of the controls and the Web Forms very easy. The
Properties window is viewed by selecting View->Properties Window from the menu bar or pressing the F4
key from the keyboard.

View Tabs —of Used to see different layout Web page. Design tab shows the design of Web Form, similarly

Source tab shows the source code of the Web Form, whereas, Split tab shows both design and source code
partially.

ASP.NET 1.5 Essantlals

After exploring the Visual Studio 2008 IDE in brief, let’s move further and see how to create a Web application.

Throughout this book, we are creating ASP.NET websites and referring them as Web applications interchangeably.

Creating a Sample ASP.NET 3.5 Website

Let’s create a website named SampleWebsiteVB. You can find the code for the SampleWebsiteVB application in
the Code\ ASP.NET\ Chapter 14\ SampleWebsiteVB folder on the CD.

To do so, let’s follow these steps:
1. Open Microsoft Visual Studio 2008,

2. Click the File->New->Web Site option, as shown in Figure 14.8:

Ter Rnauye idew Help
LR HE S Cart- skt
b @ vt Shate tina it

Ty <comectanstomgs-
tey

ot s, Trumng W Virts Saorer Par | -
S 2 S Z - Lkt soendd 1y)
tating ith Mo sof: Vienal Treee)
Lot o Wy Ao Wl Sitvms Bt -
S % z. ¥
how. ADG NS T Data Sevvices ond LG sumpity ruppod fos dem
aprrabons in youn Seerhght apps.
Fhomstis un Vape It 1wl ¥alue Yy, el Remg
Fry 19 Sep: X000 2148500 Z - Kanl Ouenke, an engineer cn e
4, Eaplasns how Uzine |47 and tpe wharence 24 ooTasanally
pecwade Hhe compuer weth too much type imfarmation, Inaceny
Cautmg rriull you mght ot deplet.
Anenatiue et of Codunppets
Whet's sevwin Viwsial C#7 F11,19 Sa 2006 2590 - A vt of rodke snpprts for ©

. developers. Some new Does srd sonve thax replace code saippes
that thup with Visusl Studic.

Lien

T o1 Usby Grenerics
R Fr, 19 Sap 2008 02000 T - Kkt Oerkon, a0 mginetr oo the £
2i T nbere e, piorirdes & numbes of bese. bt very moghtful, bps on
g genencs

MRLT on b rr s Mandaig

Figure 14.8: First Step to Create a Website
The New Web Site dialog box appears (Figure 14.9),

3. Select ASP.NET Web Site in the Templates pane, select the language as Visual Basic and set the location
to create the website, and click the OK button, as shown in Figure 14.9:

| isum Swmdio nstalled vemplates

| G ASP.NET Web Site W ASPIET ek Serace Wy Empty Web Ste
. SR WCF Service a8 asP NET Reports ‘Web Ste S ASPNET Costet Reports Web Sde
C My Tenpigtes

- 13 search Ontine Temptates.

© Ablark ASPNET Web ste LNET Feavemork 35}

Cithapter ibSampleWebstevd

Figure 14.9: New Web Site Dialog Box
575

Chapter 14

It opens the Visual Studio 2008 IDE with the Default .aspx file, also known as the source file, as shown
in Figure 14.10:

Fle FEdit View Webste Buld Debug Data Took Test Anshze Window Help
i ¥ Debug

- NET

<!DCCTYFE ntmi FUBLIC ™-//W3AC//DID XHIML 1.0 Trapsiticnzis// ER" "

P htEl sminswtRLLn S Sawe w3, GrR 1000/ XRTELY
<h%ad zubat="server">
H <titlerlotitled Page</oatin>
b </hesd>
<bady>
<foIm LITNEOIELT runAt=Taervacty
<ty

- </dar
Poor </ form> - e
v U Eediretes SA2G
L - eSbedyy I
efntmis v Mse dynamic p True

i G Virtual gath SsmplewWebste _

** Start the local Wel server sven
___r. when not the startup project

| Creating project ‘SamplewWebreVE-.

Figure 14.10: Visual Studio 2008 IDE
4. Now, open the code-behind file by pressing the F7 key. The default code-behind file (Default.aspx.vb)
window appears, as shown in Figure 14.11:

Fite m .View W&ﬂte
e Rg -3 N Y

riPartial Class _Default

inherits Systam.fen.UT.Page

“End Class

Lnl Coil (Rl

Figure 14.11: Code-Behind File

To load an event, follow these steps:

1. Select the form1 object from the drop-down list on the Default.aspx.vb file, as shown in Figure 14.12:

576

ASP.NET 3.5 Essentials

Fle EdW View Webste Buld Debuy Dats Took Test Anthe Window Help
p : W oo W ¥ Debug

L

tnd Cold Cht "

Figure 14.12: Drop-Down List Showing the form1 Object
2. Now, select the Load event corresponding to the forml object from the drop-down list, as shown in
Figure 14.13:

Build Orbug Oate Took Ten Anabyze
[R ._.Vq - ‘-y: ;)
ST

Fartisl Class Defaulc
Innerice 3yscen. Ker.UI.Fage

o P S A
nd Colf hE S

Figure 14.13: Drop-Down List Showing the Events List
After adding Load event, the code-behind file {(Default.aspx.vb) looks, as shown in Figure 14.14:

Earcial Clmas _Default
inpezits SysvemMeb.Ol.Fage SR

Protecced Sub formi Load (ByVal sender ks Onject, By7al e hs Syacex.Evencirgs) Handies forml.lesd

End Sup
End Clasz | P S

Lng Colg [=1] NS

FER RSP

Figure 14.14: Code-Behind Flle
You can find the code for the Default ., aspx page in Listing 14.1:

Listing 14.1: Showing the Code for the Default .aspx Page
%4 page tLangu AW fntwireup="false".

“<form id="Forml" runat="server’>

577

Chapter 14

</htmls . BT A TN P T R
3. Now, in order to display the text Hello World, type the highlighted code in the
code-behind files. Now, add the code in the code-behind file of the Default.aspx page as shown in
Listing 14.2:
Listing 14.2: Showing the code for the Code-Behind File of the Default . aspx Page

Partial Class pefault = .
Inherits System.web:

Protected sub fo
forml.Load
End Sub. i

4. Press the F5 key to get the output, as shown in Figure 14.15:

@ lntemet | Protected Mode:On 1

Figure 14.15: Qutput of the Application
You can see the output as Hello World in the Figure 14.15.

Summary

In this chapter, we have covered new features in ASP.NET 3.5, such as ASP.NET AJAX support, ListView
control, and DataPager control, ASP.NET life cycle, and overview of Visual Studio 2008, It also discusses new
features of Visual Studio 2008 such as support for multi-targeting, and support for LINQ. WE have also explored
and created a sample ASP.NET 3.5 Web application.

In the next chapter, we discuss about how to develop a Web application in ASP.NET 3.5.

Quick Revise
Q1. Explain the different versions of NET Framework?
Ans: The different versions of .NET Framework are:

1. .NET Framework 1.0 — NET Framework 1.0 is the first version of NET Framework and was released
by Microsoft on February 13, 2002. It is a part of Visual Studio NET 2002, which is the first version of
Visual Studio .NET.

578

ASP.NET 3.5 Essentials

Q2.

Ans:

Q3.

Ans:

Q4.

2.

NET Framework 1.1 —The first major upgrade of NET Framework, .NET Framework 1.1, was
released on April 3, 2003. It is a part of Visual Studio .NET 2003, which is the second version of
Visual Studio .NET. In contrast to .NET Framework 1.0, NET Framework 1.1 has in-built support for
mobile ASP.NET controls, Open Database Connectivity {ODBC), and Oracle databases. It also has
support for Internet Protocol version 6 (IPv6).

3. .NET Framework 2.0—The second major upgrade of NET Framework, NET Framework 2.0, was

released on January 22, 2006. It is a part of Visual Studic 2005 and Microsoft SQL Server 2005, NET
Framework 2.0 is the latest version of INET Framework that has support for Windows 2000. .NET
Framework 2.0 has many changes and enhancements as compared to NET Framework 1.1. It has a
number of Application Programming Interface (API) changes. It contains many new ASP NET Web
controls and data controls. It also contains new personalization features for ASP.NET, for example,
support for themes, skins, and WebParts.

4. .NET Framework 3.0—The third major upgrade of NET Framework, .NET Framework 3.0, was

released on November 21, 2006. It contains a set of managed code APls that form an integral part of
Windows Vista and Windows Server 2008. NET Framework 3.0 uses the same version of CLR that
was incorporated with .NET Framework 2.0. .NET Framework 3.0 includes the following four new
components:

¢ Windows Presentation Foundation

¢ Windows Communicaticn Foundation

» Windows Workflow Foundation

¢ Windows CardSpace (WCS)
NET Framework 3.5—The fourth major upgrade of NET Framework, .NET Framework 3.5, was
released on November 19, 2007. Similar to NET Framework 3.0, NET Framework 3.5 also uses the
CLR version 2.0. NET Framework 3.5 also installs NET Framework 2.0 Service Pack (SP) 1, .NET
Framework 2.0 SP2 (with 3.5 SP1), and .NET Framework 3.0 SP1, which includes methods and
properties that are required for the NET Framework 3.5 features, such as Language-Integrated
Query (LINQ). In addition to LINQ, NET Framework 3.5 includes many other new features, such as
extension methods, lambda expressions, anonymous types, and built-in support for ASP.NET AJAX.

Define Merge tool?

Merge tool (Aspnet_merge.exe) allows you to combine and manage assemblies created by the
ASP NET precompilation tool (Aspnet _compiler.exe).

‘What are the different stages of an ASP.NET Web Page?

The different stages of an ASP.NET Web page are as follows:

© NS G R W N

Page request

Start

Page initialization

Load

Validation

Postback event handling
Rendering

Unload

Which of these is not a stage of an ASP.NET Web Page?

Ll ol

Load

Postback event handling
Rendering
Pre-compilation

579

Chaptar 14

Ans: Pre-compilation
Q5. The Framework Version box appears in................... dialog box.
1. New Project
2. Add New Item
3. Add Existing Item
4. Properties
Ans: New Project
Q6. The.............window helps you to recognize keywords and identifiers of the programming language.
1. Properties
2. Code Editor
3. Add Existing Item
4. New Project
Ans: Code Editor
Q7. Which shortcut key combination is used to open Solution Explorer?
Ans: CTRL+ALT+L
Q8. What are the different stages of the ASP.NET application life cycle with integrated mode in 115 7.0?
Ans: Different stages of the ASP.NET application life cycle with integrated mode in IIS 7.0 are as follows:
1. A request is made for accessing application rescurce.
2. The unified pipeline receives the first request for the application.
3. Response objects are created for each request.
4. An HttpApplication object is assigned to the request.
5. The request is processed by the HttpApplication pipeline.
Q9. Which tabs are used to see different layout of a Web page?
Ans: View tabs
Q10. What do you mean by IntelliSense?

Ans: Visual Studic Code Editor supports the feature of IntelliSense, which helps you to write accurate code.
As you start typing the code the methods, properties, and events of the .NET Framework Class Library
are automatically offered as a sorted list with the help of IntelliSense feature. This list, which
automatically opens in an IntelliSense, shows all the members that are valid for using the code. When the
Web developer selects an option from the InteiliSense, it is included in the line of cade with accurate
spelling and case. While writing a code, if there is any error in the code, the IntelliSense displays a
squiggle under the code or the keyword that signifies an induced error.

580

Developing a
Web Application

See page:

If you need information on:

Specifying a Location for a Web Appli

cation

Chapter 15

Earlier, we used to work only on desklop applications that were accessible to a single computer, where they
were installed, and could not be accessed by other users. They could not be hosted on the Internet either. To
overcome these shortcomings, Web applications came into existence. A Web application implies an application
hosted on the Internet, which can be accessed through a Web browser, such as Internet Explorer or Mozilla
Firefox. Now-a-days, business through the Internet has gained immense popularity due to various features and
benefits, such as the ease of making transactions from home or office. Therefore, it becomes quite crucial for
companies to make their presence felt over the Internet so that the services provided by them can be easily
accessible to their respective customers. To do so, companies develop their own Web applications; which not
only helps them reaching out to prospective clients, but also helps them in conducting businesses online. A very
good example of such a scenario is an online shopping website, where you can perform transactions related to
buying or selling a product. Another feature that makes Web applications more popular is the convenience of
updating and maintaining them without werking individually on potentially thousands of client computers.
Since Web application:s reside on Web servers, updating and maintaining them at a central location {Web server)
can serve the purpose of updating and maintaining them over thousands of client computers.

ASP.NET provides an efficient development environment for developing Web applications. To create a Web
application, you need to be aware of the following concepts:

Specifying a Location for a Web Application

File Types in ASP.NET 3.5

ASP.NET 3.5 Pages

Understanding ASP.NET 3.5 Page Directives

Working with Server Controls

Understanding ASP.NET 3.5 Provider Model

ASP.NET 3.5 Coding Moadels

Implementing Code Sharing

Compilation in ASP.NET 3.5

O0o0oOoooQoao

C

Specifying a Location for a Web Application

After a Web application is developed, it needs to be stored in a particular location in a system. We can then open

- the application from this location to work on it. Visual Studio allows you to create a Web application with a

virtual directory mapped to the Internet Information Services (IIS) server or a stand-alone application outside
the boundaries of the IiS server. Visual Studio 2008 allows you to store Web applications in the following three
locations:

Q File System
0 HyperText Transfer Protocol (HTTP)
O File Transfer Protocol (FTP)

File System

582

Visual Studio allows you to keep the files of a Web application or website in a folder on the local hard drive or in
a shared location on the local area network. These websites, known as File System websites, are not associated
with any IIS application, unless you create an IIS virtual directory. You can run these websites by using the built-
in Web server, which executes at runtime. This Web server allows you to run Web applications, even if the IIS
server is not configured on your machine. You can also verify the existence of the built-in Web Server by
selecting the New—>Web Site option in the Visual Studio IDE. In Windows Vista, the default location for your
Web applications is C:\Users\Jigyasa\Documents\Visual Studio 2008\WebSites, as shown in
Figure 15.1:

Here, Jigyasa is the Windows user name, so it will vary from system fo system.

Developing a Web Application

M iz TR b Pt

§ a3 HEY vven Sae B ASENET wah Senvice W Erngty Wak Ste
o 2O MET Rrpens itk Sne S 2PHET Trvel Feprn et Sie
U AN Templae

Gl terrch Onime Tempianas,

A blank 2SPNET Wieb site L NET Framawork, 3.5:

F1sudl e

Figure 15.1: Defauit Path of a Website
However, you can also store your Web application at any other location. When you are using a Web server, the
location of your Web application is not constrained to any particular folder.

In the figure, you can also see the remaining location options, HTTP and FIP.

You can change the default path of the Web application according fo the need of your project by clicking the Browse
button.

Now, open the Choose Location dialog box by clicking the Browse button; the File System tab is selected by
default, as shown in Figure 15.2:

File System
J Setect the fokder you want 1o open.
T e

Local 2 v B conacn:
" 4 Desrop
e.af ¥ Documens
FIP She 3 4. Hatery
¥y o 3G Camilog
2 4+ SQ Server Management Studio Expeess
Pemnote Site . Visuat Ztuo 205

st Sluchc 2002
Basiup Fites

o CodeSnpuet
Prejeets

-
+ B Dennloads
o B Farrte

Tokder:

'\ brerihgy aed’ Documenty Vsl Studea 008, Wb Gites

"L“ihv i Concet |

" Figure 15.2; Create New Folder Option

You can also change the default path of the Web application by creating a new folder in the File System tab
{Figure 15.2).

HTTP

Visual Studio allows you to develop and store your Web application on the IIS server. For that, Visual Studio
provides an HTTP option for developing and storing Web applications on the IIS server. This option can also be
used to develop and store your Web application on the following servers:

Q@ Local IIS Server

O Remote IIS Server

Now, let's discuss these options in detail.

583

Chapter 15

Storing Web Appiications Using the Local IIS Option

584

A local IS website is an IIS Web application. Visual Studio communicates with the website by using the HTTP
protocol. In the Choose Location dialog box, select the Local IIS option to store the website files on the local IIS
server. When you select this option, the Local Web Servers option is displayed in the Choose Location
window, as shown in Figure 15.3:

Select the Web Ste you wart To opm. Bh

Figure 15.3: Local IS Option Selected
This Local Web Servers option shows a list of all the virtual application roots on your machine.

If you want to see the local IS instance, right-click the Visual Studio 2008 in the start menu and choose the option Run
as administrator from the context menu. The local IiS instance will appear, as shown in Figure 15.4.

The folloewing steps are performed to create a new virtual directory for your Web application:

1. Select the Default Web Site option. It will enable two options: Create New Web Application and Create New
Virtual Directory. These options are available at the right-hand corner of the dialog box, as shown in
Figure 15.4:)

“ Local lmiemnat Information Server
Select the Web stz you wam to open. E IV 3
T)

Figure 15.4: Highlighted Default Web Site Option

2. Create a new virtual directory, say, Test, using the Create New Virtual Directory option, as shown in
Figure 15.5:

Locai Intemet infonmation Serves
Stlect the Web st you want 10 opan. ®@r
M Lo seves T T
“ A Defauk Wee Sae

A

i

Fite Syrten.

12 Une Secure Sockets Lapw

Figure 15.5: New Virtual Directory Named Test

Developing & Web Application

To delste an existing virtual directory, select the directory that you want to delete and click the Delete option.

3. Now, click the Open button. You can see this directory (Test) added to the New Web Site dialog box, as
shown in Figure 15.6:

S pns e

7 O Ergty el Sta. < HORE Setint P T Rty 1 S

" 5 ¥ Oyramec Data Enires ek Sde % Dyramvc Grtm 't e e HLAZD HET (ol Reponts W Tar
- e T

: e

Figure 15.6: Test Directory Added to New Web Site Dialog Box
4.

Click the OK button, as shown in Figure 15.6. Visual Studio then creates a new Web application.
However, instead of depending on the built-in Web server, here your application will use the IS server. When
you invoke your Web application, the URL that appears consists of something similar

to
http://localhost/Test/Default.aspx, which shows that it is using the 1IS server.

To ragister the IS server in ASP.NET 3.5, run the Visual Studio 2008 Command Prompt as an administrator and use

the aspnet_regiis — syntax. For more details on the aspnet_regiis.exe file, refer to Chapter 24, Managing Web
Applications.

Storing Web Applications Using the Remote Site Option

The Remote Site option stores files on a remote server that is accessible over a local network. A remote website is
an [IS Web application linked with a copy of the IIS server that is running on another computer. Visual Studio
communicates with the website by using the HTTP protocol to host the site on the remote IIS server. Enter the
location of website in the Web site location textbox and click the Open button, as shown in Figure 15.7:

For the Wb site tocabon, erntes the UK of 3 Web ste configured with Fromage Servar Edargiom,

Figure 15.7: Remote Site Option
You can see the Remote Site option using the HTTP location, as shown in Figure 15.8:

Chapter 15

| : e

Ternplater

T o SRR WA e
LR AHET Web St W 858 ET Web Serce W gt Hieb Sate
AP T Rt vt Sete AT ST Cruvial flepurts Web Sae

R s
i Semch Onfier Templates,

2 vl AP MET Web wie . NET Framearsh 35}

Figure 15.8: Remote Site Using HTTP Location

FTP

586

FTP enables you to actually store and even code your applications while they reside on a server somewhere else
in your enterprise. For that, you must have the credentials to attach to the FTP server and permissions to read
and write to the FTF location. You can also use the FTP features, such as exchanging and manipulating files over
any Transfer Control Protocol (TCP} based computer network, to work on different locations within the same
server. To create your application on the remote server using FTP, you have to provide the Server name, Port to
use, Directory, and other credentials, if required, as shown in Figure 15.9:

PR R R AL Y R

Figure 15.9: FTP Site Option

If you provide correct information, Visual Studio accesses the remote server and creates the appropriate files
required for your application, as shown in Figure 15.10:

: Templates

R ASPMET Wen Sae B ASPNET Wb Sarace ¥ Empay Web Site

;W ASP NET Reports Web Site FRASPINET Crystol Reports Web Ste

ipi 192 5818 e

Figure 15.10: FTP Site Option Using FTP Location
After understanding the various options for storing Web applications (websites) at different locations, let’s
understand the file types supported by ASP.NET 3.5.

Developing a Web Application

While creating a ASP.NET website on FTP iocation, you need ensure that the virtual directory on FTP server is mapped
to virtual directory on I{S web server.

File Types in ASP.NET 3.5

Web applications contain a number of file types—some are supported and managed by ASP.NET 3.5, and the
rest are supported and managed by the IIS server. Most of the ASP.NET 3.5 file types can be automatically

generated using the Add New Item dialog box in Visual Studio 2008.

File types are mapped to Web applications using application mappings. For example, if you double-click a . txt
file in Windows Explorer, it will probably open a Notepad because in Windows, - txt file types are mapped
to the Notepad. exe file by default. In Web applications, file types are mapped to application extensions in the
IIS server. Table 15.1 lists the file types managed by ASP.NET:

Table 15.1; File Types Managed by ASP.NET

sl ot

.asax Application root
the HttpApplicaticn class, This file represents the Web
application and contains optional methods that run at the
start or end of the application’s lifetime.

.ascx Application root or a subdirectory It is a Web user control file that defines a custom, reusable
control.

.ashx Application root or a subdirectory It is a generic handler file that contains code to implement
the IHt tpHandler interface.

.asmx Application root or a subdirectory It is an XML Web services file containing classes and
methods that are available to other Web applications
through Simple Object Access Protocol (SOAP).

-aspx Application root or a subdirectory It is an ASP.NET Web forms file (page) containing Web
controls, and presentation and business logic.

.axd Application root It is a handler file used to manage website administration
requests, typically Trace . axd.

.browser App_Browsers subdirectory 1t is a browser definition file used to identify the features
of client browsers.

.ed Application root or a subdirectory It is a class diagram file.

.compile Bin subdirectory It is a precompiled stub file that points to an assembly

representing a compiled website file. Executable file types
{.aspx, ascx, .master, theme files) are precompiled
and put in the Bin subdirectory.

.cs, .jsl, .vb

App_Code subdirectory, or in the
case of a code-behind file for an
ASP.NET page, in the same

It is a class source-code file that is compiled at runtime. A
class can be ann HTTP Module, an HTTP Handler, a code-
behind file for an ASP.NET page, or a stand-alone class file

directory as the Web page containing application logic.
.CSproj, Visual Studio project directory Tt is a project file for a Visual Studio client-application
.vbproj, project.
.vispre]
.disco, App WebReferences It is an XML Web services discovery file, which is used to
-vsdisco subdirectory help locate available Web services.
.dsdgm, Application root or a subdirectory It is a distributed service diagram (DSD) file that can be
.dsprototype added to any Visual Studio solution that provides or

587

Chapter 15

588

Table 15.1: File Types Managed by ASP.NET

consumes Web services to reverse-engineer an

architectural view of the Web service interactions.

-dil Bin subdirectory It is a compiled class library file (assembly). Note that
instead of placing compiled assemblies in the Bin
subdirectory, you can put source code for classes in the
App_Code subdirectory.

-licx, Application root or a subdirectory It is a license file. Licensing helps authors protect

-webinfo intellectual property by checking whether the user is
authorized to use the control.

-master Application root or subdirectory Tt is a master page that defines the layout for other Web
pages in a Web application.

-mdb, .ldb App_Data subdirectory It is an Access database file.

.mdf App_Data subdirectory It is a SQL database file to use with SQL Server Express.

LMSgX, ,SVC

Application root or a subdirectory

It is an Indigo Messaging Framework (MFx) service file.

.rem Application root or a subdirectory It is a remoting handler file.
-resources, App_GlobalResources or It is a resource file containing resource strings that refer to
.resx App_LocalResources images, localizable text, or other data.
subdirectory
- sdm, Application root or a subdirectory It is a system definition model (SDM) file.
. sdmDocument
-sitemap Application root It is a site-map file containing the structure of the website.
ASP.NET comes with a default site-map provider that uses
site-mnap files to easily display a navigational control in a
Web page.
.skin App_Themes subdirectory It is a skin file containing property settings to apply to
Web controls for consistent formatting.
-sln Visual Web Developer project It is a solution file for a Visual Web Developer project.
directory ’
- s0ap Application root or a subdirectory It is a SOAP extension file.

File types that are managed by ASP.NET are mapped to the aspnetl_isapi.dil handier in the IS server.

Table 15.2 lists the file types managed by the IIS server:

Tabla 15.2: File Types Managed by the HS server

i 2]

Itisa Global. asa file containing optional methods that

.asa Application root
run at the start or end of the ASP session or application
lifetime
.asp Application root or a It is an ASP Web page containing 8 directives and
subdirectory script code, which use the ASP built-in objects
- Ccdx App_Data subdirectory Itis a compound index file structure file for Visual FoxPro
.cer Application root or a It is a certificate file used to authenticate a website

Developing a Web Application

.ide Application root or a It is an Internet Database Connector file mapped to
subdirectory httpodbc.dil

.shtm, .shtml, Application root or a It is mapped to ssinc.dil

.stm subdirectory

File types that are managed by ASP.NET are usually mapped to the asp.dif handler in the IS server.

After getting familiar with the file types used to create ASP.NET website applications, let’s move on to explore
ASP NET 3.5 Web pages, which are required to create such applications.

Exploring ASP.NET 3.5 Web Pages

ASP.NET 3.5 Web pages are files with the .aspx extension, and contain the code to implement a Web
application. Now, the question is: where are these pages stored? Well, these Web pages are stored on the IS
virtual directory. When a client request is received by the IIS server, the requested page is searched for and
information is sent back in a Response object to render the HTML markup on to the client browser. The
rendered HTML markup defines everything about a Web page, such as its content, layout, and appearance.

Generally, a Web application developed in any programming language is first compiled and then converted into
its intermediate code, also known as Intermediate Language (IL). This is true for an ASP.NET Web application
also. This ASP.NET intermediate code is platform-independent and is obtained by compiling the source code
written in any .NET compatible language. Some of the NET compatible languages for ASP.NET applications are
Visual Basic, and C#.
When the request for a Web page is received for the first time, its corresponding .aspx file is compiled to
generate the class file. The class file created is then used to process the request. However, when a request for the
" same Web page is received subsequently, its class file is referenced directly to process the request. This enhances
the performance and reduces the response time of processing a request.
The code used to develop an ASP.NET Web page is similar to the code used in the HTML file. For instance, the
following code shows a simple ASP.NET Web page displaying a welcome page on the browser. You can find this
code in the Code\ ASP.NET\ Chapter 15\ WelcomePage folder on the CD. Listing 15.1 shows the code for the
Default.aspx page:

Page

</htwt>

589

Chapter 15

In the preceding listing, you can see that the first line of the ASP.NET page is enclosed between the <% and %>
tags. These blocks, also known as code render blocks, contain information about the code, such as the language
used in developing Web applications.

Now, let’s build the application by pressing the F5 key. It simply displays a message, Welcome to the World of
ASP.NET 3.5 on the browser as shown in Fxgure 15 11:

! “ elcome to the “’orld of ASP.NET 3.5

Doae & A Inberied 1 ormevea e de- e -

Figure 15.11: The Welcome Page
Now, let’s learn about these blocks in detail.

Code Render Blocks

Code render blocks define the inline code or inline expressions that are executed when a Web page is rendered.

This inline code is then executed by the server and the output is displayed on the client browser that requested
for the page. The code render blocks are capable of displaying information on the client browser without
customarily calling the Write method. The code render blocks are represented on a page by the <3 %> symbols.

The code present inside these symbols is executed in the top-down manner. Now, let’s put the concept of code
render blocks into use by creating an application, CodeRenderBlock. This application uses a code render block
to implement a loop used for changing the text size. You can find the code for the CodeRenderBlock
application in the Code\ ASP.NET\ Chapter 15\ CodeRenderBlock folder on the CD. You can find the code for
the Default.aspx page for code render blocks in Listing 15.2: :

Llstmg 15.2: Showmg the Code for the Default.aspx Page
Sl Page L VB Aﬂteﬁventw';reupn"fa'fse" cbdeFiIes"Default aspx vb"
o inharits=' _De auT

<IDOETYPE him] 'PUBLIC " fm'o XHTML 1.1/ cﬂ :

o g/ wew .ws.urgm xhtm ufamlxhtmu_l. d“
html mlﬂs&"hﬁtﬂ llm,ua org/1999,(xhtm1 "ol

dmad id="nHeadl" runat="server”s .

<titlesuntitied Page</t‘it1e> :

</head>

% Dim T AS Inted"
For T=0To 6 step 196>

<font s1ze=" <%-I7&>" > we‘lc:ame 6 ASF HET 3. Evdfont:-
 A
S Nt R T
»:Idiv:» :

Now, let’s build the application by pressing the F5 key. The output is as shown in Figure 15.12:

Fle €M View Favorien I.-ls e i X h
et BB e e

]
T
| Som < ARATT L
Wrcome w ATPIET .2
Walcome ta ASP NET 1.5
Welcome 1o ASPNET 1.5

i Welcome to ASPNET 3.5
';‘ Welcome to ASP.NET 3.5

| bene .Olmmwm-smm i 0% -

Figure 15.12; Output of CodeRenderBlock Appllcatlon

590

Developing a Web Application

Understanding ASP.NET 3.5 Page Directives

ASP . NET page directives are instructions to specify optional settings, such as registering a custom control and
page language. These settings are used to describe how ASP.NET Web form pages (.aspx) or User control {.ascx)
pages are processed by NET Framework.

Page directives can be placed anywhere in an . aspx or .ascx file; although the standard practice is to include
them at the top of the file.
The syntax to use a page directive is as follows:
<@ directive fattributesvalue}* % o A e B
ASP.NET treats any directive block (<%@ %>) that does not contain an explicit directive name as a @ Page
directive {for a page) or as a @ Control directive (for a usercontrol). ASP.NET 3.5 pages consist of the
following directives:
QO @Page
@ Control
@ Import
@ Implements
@ Register
@ Assembly
@ Master
@ WebHandler
@ PreviousPageType
@ MasterType
@ CutputCache
@ Reference

The @ Page Directive

The @ Page directive defines page-specific attributes used by the ASP.NET page parser and compiler. It can be
included only in . aspx files. :

| oy o I o Y 0 R Y 6 [&y |

Q

The syntax for the @ Fage directive is as follows:
<%@ Page attribute="value™ [attribute="value.. .} %=, . vl 00

The @ Control Directive

The @ Control directive defines control-specific attributes used by the ASP.NET page parser and compiler. It can
only be used in . ascx files (user controls).

The syntax for the @ Control directive is as follows:
<& Control attributesvalue” [attributessvalue”. ..l %

The @ Import Directive

The @ Import directive explicitly imports a namespace into ASP.NET application files, such as Web page, a user
control, a master page,. or a Global.asax file. It also makes all classes and interfaces of the imported
namespace available to the application files.

The syntax for the 8 Import directive is as follows:
o Import namespacestvalipel ¥k e T e
The @ Implements Directive

The @ Implements directive indicates that the Web page, user control, or master page must implement the
specified NET Framework interface.

The syntax for the 8 Implements directive is as follows:

591

Chapter 15

<X@ Implements interface="validInterfacename” % :: =

The @ Register Directive

The @ Register directive creates an association between tag prefix and custom controls, which helps you to refer
to custom controls in ASP.NET Web pages and user controls,
The syntax for the @ Register directive is as follows:
%@ register tagprefix=“tagprefix”
namespace="namespace”
wi o assembly="assenb 1y % LR
ol Register: tagprefua“tagpreﬁx" w.
s famespace= namespace” X» oo i
<%Q Register tagpreﬁx=“tagpref1x"
tagname="tagname” -
src="pathnams” %

The @ Assembly Directive

The @ Assembly directive links an assembly to the ASP.NET application files, such as a Web page, a user control,
a master page, or a Global.asax file during compilation and makes all the classes and interfaces of an
assembly available for use to the application.

The syntax for the @ Assembly directive is as fo[lows
<0 Assembly Name="assenb] yname" %>

X Assembly’ Src:'pathname" %
The @ Master Directive

The @ Master directive defines attributes of a master page (.master file) that are used by the ASP.NET page
parser and compiler.

The syntax for the @ Master directive is as follows:
<48 Master attribute=*value” [attributesvalue”...1 %

The @ WebHandler Directive
The @ WebHandler directive identifies an ASP.NET It tpHandler page.

The syntax for the @WebHandler directive is as follows:
<¥%@ webhandler attribute="value” [attribute="value"...J % ... oicl ™ ot sie T,

The @ PreviousPageType Directive

The @ PreviousPageType directive provides the means to get strong typing against the previous page as
accessed through the PreviousPage property.

The syntax for the @ PreviousPage directive is as follows:
%8 PrevicusPageType attributes“value® [attributesvalue. ..] %5 . 20 o

The @ MasterType Directive

The @ MasterType directive provides a way to create a strongly typed reference to the ASP.NET master page
when the master page is accessed from the Master property.

The syntax for the @ MasterType directive is as follows:
%8 Mastertypé attributesvalue’ attributestyvadye [,] &s o T b e

The @ OutputCache Directive
The @ OutputCache directive declaratively controls the output caching policies of a Web page or a user control.
The syntax for the @ GutputCache directive is as follows:

592

Developing a Web Application

&@ Outputcache puratione"#o secands"_ '

The @ Reference Directive

The @ Reference directive dynamically compiles and links the user control, page source file, or arbitrary file
located at some virtual path against the current Web page or user control in which this directive is declared.

The syntax for the @ Reference directive is as follows:

- <% Reference Page="path
ﬁoﬁt platpath to . ASEX
- virtyalPath="path to -

Working with Server Controis

Along with the HTML and programming code, an ASP.NET Web page also contains server controls, such as the
TextBox and Image controls. Server controls are programmable objects that act as User Interface (Ul) elements
on a Web page. For instance, a typical example of server control can be a TextBox control that takes data from
the user as input and displays the output at the click of a Butten control. The code for a server control is
executed and compiled at the server, so these controls are also known as server-side objects. Working with
server controls is a great experience as you can define their complete behavior by setting the properties. You can
set the properties either by explicitly writing them in the server control tag or by defining them in the
Properties window. '

You can use server control tags or intrinsic HTML tags containing the runat="server™ attribute to declare
server controls in a Web application. The server controls declared within the intrinsic HTML tags are executed
with the help of the System.Web.UI.HtmlControls namespace.

Now, let’s develop an application, named ServerControl that uses various server controls, such as Label,
TextBox, DropDownlist, and Button. You can find the code for the ServerControl application in the
Code\ ASP.NET\ Chapter 15\ ServerControl folder on the CD. Listing 15.3 shows the code of the Default.aspx
page for the server controls:

Listing 15.3: Showing the Code for the Default .aspx Page
Coderile="Default.aspx.vb"

<X@ Page Langu ea“’-ws“ -AlrtoEventwireupa"false'"
—7 Inheritss __De " : T

- <head runat; server’s :
<title-untitled Page</titles

<form td="formE" -ruﬁa,i;#-'f_'s’a Fearts
T e R ey _
<aspiiLabe ‘tabe’ server” Text-"Se]ect :
' T‘lt?é")a:fasp Laﬁeb masp Drnpoownu st ma“umpmwm.isﬂ’f
ruRats"sarver’s - - ik
" xasprlistivem mrdasp Hstxtm

593

Chapter 15

594

<asp:listitem >Mrs</asp:listitem>
<asp:listitem >Miss</asp:Ti st‘ltemv
</asp:OropDowntises . . ' B '
 , Enbsp; <ag ageaabe1 15="Lahe12" runata server Text:"enter
L Name"»</asp:L, L
<asp'TextBox 1D=“rextsox1“ ruaat= servar ><fasp Text sgbr 28
B s : - (A REE ity
Snbsp; dnbspi

“Sabsp; - ' o
«A5p:BULton zns"auttanl" runats“server Taxt subuit
e fform LEEL L
</hody»
</htmi>

4 Gﬂpx" /’:.na:fd'ib '

Now, add the code in the code-behind file of the Default.aspx page for the server controls, as shown in
Listing 15.4:
Listing 15.4: Showing the code for the Code-Behind File of the Default.aspx Page

pPartial Class _pefault
Inherits. System.web.Ul.Page

Prutected Sub suttonl Click(Byval sender A' :
System.EventArgs) Wandles Buttonl.Click

'-,AsAString ER "H!icsme 2 & aropaownL t
Textboxl. .
Buttonl.visible = r-a?se . O
DropDownlistl.visible = Fa'lse R
oo TRRTBOXL:: ¥1=s1b1e ==-Fa_'ise. S SRR

' Respcmse urite(str)
End Sub N
end Class’

Now, press the F5 key to execute the Web appllcahon, as shown in Flgure 15.13:

Fak Emmrma TﬂleHp
u w aumavag. : R RN IR RS

Done R ' ﬁlm«nawmtuudwecm ﬁwx .

Figure 15 13: Output of ServerControl Appllcatmn
As shown in Figure 15.13, the Web page contains a DropDownList, TextBox, two Labels, and a Button
control that allows you to enter your name. Click the Submit button after selecting the title from the Select Title
field and entering text in the Enter Name field. Figure 15.14 shows the output:

mm\rmrmrmnep ’
WG Unestage

} Wekcome My Bl Gatos

eman

Flgure 15.14: Output Generated after Ciackmg the Submlt Button

Developing a Web Application

After fearning how to create a Web application in ASP.NET, let’s now discuss the ASP.NET 3.5 provider model.

Understanding ASP.NET 3.5 Provider Model

The provider model illustrates the position of providers. Providers work as a bridge between Data Stores
such as SQL Server and ASP.NET Services such as Membership in ASP.NET applications. You can best
visualize the ASP.NET provider model by looking at Figure 15.15:

Applications

BT
|

o b T
- : i) I
: 'g Membership i Site Maps i Profile i Other Sevvices
Zo 8 : :
e B e
. SqiMenbershipProvider Other Providers | |
g H
g e———esmemennms!
"g ActiveDic o r -
ivelhrectory- { . [_— . B . |
FE- MewbershigProvider | | AmiSiteMapProvtder i $qiProfileProvider Other Providers !

£
2

Figure 15.15: ASP.NET 3.5 Provider Model

As shown in Figure 15.15, providers act as communication channels that communicate with data sources. To
elaborate more on the concept of providers, let’s take the example of an online banking website, which allows its
customers to access and modify their account information. In such a situation, the bank needs to maintain the
records of each customer in a storage media, such as Oracle or DB2 databases. Whenever a user tries to access
the information through a website, an appropriate provider is selected, which retrieves or updates the
information in the data source. The type of the provider selected depends on the type of data source used. The
functionality of providers is very much the same as that of device drivers that extract data from the physical
hardware devices, such as floppy disc and CD.

Providers can be of many types, based on the type of services they provide. The Membership provider stores the
user names and passwords, and the Roles provider stores the user roles. By default, ASPNET 3.5 uses the
AspNet3glMembershipProvider provider. You can change the default provider by using the Web Site
Administration Tool or the Microsoft Management Console (MMC), which provides various
management tools called snap-ins.

Table 15.3 lists the different types of service providers:

Table 15.3: Different Types of Service Providers

R RO T s
Membership System.Web.Security.SqlMembersh System,Web.Security.ActiveDirectoryMembe
ipProvider rshipProvider

System.Web.Security.SqlMembershipProvider

Role System.Web.Security.3glRoleProv System.Web.Security.AuthorizationsStoreRo
management ider leProvider
System.Web.Security.SglRoleProvider
System.Web.Security.WindowsTokenRoleProv

ider

Site map System.Web.XmlSiteMapProvider System.Web _ XmlSiteMapProvider

595

Chapter 15

Table 15.3: Different Types of Service Providars

Profile System.Web.Profile.SgqlProfilePr System.Web.Profile.SqlProfileProvider
ovider
Session state System.Web,SessionState.InProcs System.Web.SessionState. InProcSessionSta
essionStateStore . teStore
System.Web.SessionState.QutOfProcSession
StateStore
System.Web.SessionState.SglSessionStates
tore
Web events N/A System,Wek.Management.EventLogWebEvent Pr
ovider

System.Web.Management .SimpleMailWebEvent
Provider

System.Web.Management ,TemplatedMailWebEv
entProvider

System.Web.Management . SqlWebEventProvider
System.Web.Management .TraceWebEventProvi

der
Web Parts System.Web.UI.WebControls.WebPa System.Web.UI.WebControls.WebParts.SqlPe
personalization rts.SqlPersonalizationProvider rsonalizationProvider
Protected N/A System.Configuration.DPAPIProtectedConfi
configuration gurationProvider
System.Configuration.RSAProtectedConfigu
rationProvider

All the providers are denved from a commeon base class known as ProviderBase, which is defined in the
System.Configuration.Providér namespace.

ASP.NET 3.5 Coding Models

Generally, a Web form consists of controls, such as Label, Button, Hyperlinks, and business logic. You use
ASP.NET coding techniques to manage these controls and business logic. ASP.NET 3.5 coding techniques refer
to the methodologies used for writing code in a Web application. ASP.NET 3.5 provides two types of coding
techniques, single-File page model and Code-Behind page model. In the single-file coding approach,
developers write code directly in the.aspx page of the application. A major drawback of the single-file code
model is that writing code in a single file results in difficult-to-read Web pages that mix presentation (HTML)
with functionality (code). This drawback is specifically evident while developing complex applications. To deal
with this drawback of the single-file page model, ASP.NET has introduced the code-behind page model. In this
model, you need to maintain separate code files for each Web page. One file stores the code to implement the
functionalities of a Web page written in some programming language, such as VB NET and C#; and the other
file stores the HTML markup of the Web application. The following list shows the coding models in
ASP.NET 3.5:

O Single-File Page Model
0 Code-Behind Page Model
Now, let’s discuss each of these models one by one.

Single-File Page Mode/

In the single-file page model, the functionalities of a Web application and the HTML markup are implemented in
the same file. The programming code is in a script block that contains the attribute runat="server” to mark it as
code that ASP.NET should execute. Visual Studio also supports the Intellisense feature. The IntelliSense feature

Developing a Web Application

provides the facility of quickly accessing the members of a particular type, from which we can select the one we
require, that is, when you start writing code inside the <% %> brackets, Visual Studio provides full IntelliSense
support for code completion, help, and code insertions. Now, let’s understand the single-file page model
through an application named as SingleFileMcdelExampleVE. You can find the code for the
SingleFileModelExampleVB application in the Code\ASP.NET\Chapter 15\ SingleFileModelExampleVB
folder on the CD. You can find the code for the Default.aspx page for the single-file page model in
Listing 15.5:

Listing 15.5: Showing the Code for the Default.aspx Page
Pagé Languages"vE" AutoEventwireg “false" GodeFﬂen"De‘Fault.as X, vb"
‘:fimﬁtsa“g ’}t i i Ao
HOCYYRE el PUBL IWIC i‘iﬂ XHTME . 1.0 Trans'{tmna}/
EE Joon W3 .org/ TR, thufnrakatmurtransuwaﬂ dr
< ript runat<"server™y
Pratected Sub auttonl,chck{swa'l sender As Db]ect. -

In the preceding listing, we have placed the button’s click-event code inside the <script> tags at the beginning,
It should be kept in mind that the runat="server” attribute is mandatory within the <script> tags, because
it will post the page to the Web server.

Now, let’s build the application by pressing the F5 key. The output of the apphcatmn is as shown in Figure 15.16:

.»\}«

- o e Tamt

.memmﬂn o a.miéa v

Flgure 15.16: Showmg the Output of the Application
Now, click the Click Me! button (Figure 15.16). The result of the c1ick event is as shown in Figure 15.17:

1 Chcked = 618 2008 11393 AM SRk, |

fune & @ ema PriecedMoge o R -

Figure 15.17: Resuit of Clicking the Click Me! Button

597

Chapter 15

Code-Behind Page Mode/

Listing 15.6: Showing the Code for the Default.aspx Page

In the code-behind model, there are two separate files, Default.aspx and Default.aspx.vh, for ASP.NET
presentation tags and programming logic to implement the functionalities of a Web application. These two files
are then linked together to run the Web application. By default, all the different versions of ASP.NET--ASP.NET
1x, ASP.NET 2.0, ASP.NET 3.x support this model. The code-behind model in ASP.NET 3.5 is similar to the
code-behind model supported by ASP.NET 2.0.

The code-behind file uses the partial class rather than the main class and it does not inherit the .aspx file,
whereas both the files are combined together during compilation to implement the complete application.

Now, let’s understand the code-behind model through an application named as CodeBehindExampleVB. You
can find the code for the CodeBehindExampleVB application in the Code\ASP.NET\Chapter 15\
CodeBehindExampleVB folder on the CD. You can find the code for the Default.aspx page for the code-
behind model in Listing 15.6:

" VE" AUTOEN et %

Now, add the code in the code-behind file of the Default.aspx page for the code-behind page model, as
shown in Listing 15.7:
Listing 15.7: Showing the code for the Code-Behind File of the Default . aspx Page
Partial-Class _Defaulg o oo snoen e orennay S
‘Inherits System.wsb.Ul.Page
Protected Sub BUtteAl CTiEk(Byval sendeér As
‘Handles Buttonl.Click: g R L T
Labell.Text = "Clicked at " & DateTime.Now.ToString():
End Sub O A SN
End Class T R

o AS-System.EventArgs)

The output of this listing is the same as shown in Figure 15.16 and Figure 15.17.

Implementing Code Sharing

Code sharing is a mechanism through which a common code is shared among different pages of a Web
application. Code sharing is particularly beneficial when you want to make the code, with specific functionality,
accessible to all the pages in a Web application. To implement code sharing, the following three methods are
used:

Developing a Web Application

Q Using the Code Directory
Q Using the bin Directory
Q Using the Global Assembly Cache

Using the Code Directory

ASP.NET 3.5 provides a unique directory known as App_Code to store code files that are accessible to all the
Web pages of a Web application. When you add something inside the App_Code folder, such as class or .wsdl
files, it is automatically detected and compiled. Once compiled, any page in your Web application can access
those files or classes. To create the App_Code folder, right-click the project name in the Solution Explorer and
select Add ASP.NET Folder-»App_Code. It adds the App_Code folder in the Solution Explorer. Now, right-click
the App_Code folder and select the Add New Item option. The Add New Item dialog box appears, as shown in
Figure 15.18:

i Templates:

r

| | i Daset
|l Report Wizard

. | Vicusl Studic instatied templates
| 2 AN erabled WCF Service

-ﬂcm
SALING to SQU Chasses
& Text Fite

mE

ﬂ Class Disgram

2 Repont

N My Ternpletes -
i .} Semcch Onling Templates, .

ungage [vmd

4B cote i apdisle Pie ;

et £

B ey

Flgure 15.18: Add New tem Dlalog Box
As shown in Figure 15.18, you can add as many different classes and files to the App_Code folder so that they
are accessible across all the pages in the Web application. To add an item, just select its icon and click the Add
button. Figure 15.19 shows the Solution Explorer, with a class file added to the App_Code folder:

2 AR A e .

= Salution ’CodeBahdenmpte\fB @ra pm,ecﬂ;i

% & :9 DiChapter 15\CodeBehindExampieVE\
2 e & App_Code
L L v

L 33 App Data
& 4 Default.aspx
i web.config

YT AT o S ma

R

B R U LA O ERERAR

Figure 15.19: The SOIutIon Explorar

Using the bin Directory
The code for a specific functionality in a Web application can also be made accessible to all the Web pages of a
Web application by storing the sharable files (the files you want to share) in the bin directory. Since ASP.NET
1.x, this method is used for sharing the code. The bin directory is similar to the App_Code directory except that
it stores the precompiled assemblies of the code files that are required by all the Web pages of a Web application.

599 -

Chapter 15

You can use this method when you need to reuse the code written in other Web applications. In this case, you
need to include the executable or the DLL file of that code in the bin directory.

Using the Global Assembly Cache

Another method of making the code for a specific functionality available to all the Web pages of a Web
application is by using the global assembly cache. NET Framework provides various assemblies that are stored
in the global assembly cache. These assemblies can be accessed by all the Web pages of the Web application. To
register or add the required assemblies in the global assembly cache, write the following code in the
web. config file of a Web application:

Compilation in ASP.NET 3.5

ASP.NET first compiles code into one or more assemblies. Assemblies are files with the extension .dl1l. You can
choose multiple languages, such as VB, C#, and others to write ASP.NET code. When the code is compiled, it is
converted into a language-independent and CPU-independent language called Microsoft Intermediate Language
(MSIL). ASP.NET 3.5 introduced a new tool for compilation known as Merge tool, which we will discuss later in
this chapter. Compilation enhances performance, security, stability, and interoperability of a Web application. At
runtime, MSIL is translated into CPU-specific instructions, which are specific to the processors of the computers
running the applications. The following topics help you to familiarize with compilation in ASP.NET 3.5:

U Compiling on First Request
O Recompiling on Change

0 Compilation Dependencies
Q Using the Merge Tool

Compifing on First Reguest
In ASP.NET, Web pages and code files are compiled dynamically by default when users first request a resource.
A resource can be an ASP.NET page (. aspx file), which the user requests from a website. ASP.NET supports the
dynamic compilation of ASP.NET pages (.aspx files), ASP.NET Web services (.asmx files), ASP.NET HTTP
handlers (.ashx files), and ASP.NET application files (Glcbal.asax), as well as other files, such as source
code and class files.

Recompiling on Change
If you make any changes to a dynamically compiled ASP.NET file, it automatically invalidates the file’s cached
compiled assembly and triggers recompilation of all the affected resources, such as .d11 files. Now, when the
request to the application is made again, ASP.NET recognizes that the code has been changed and recompiles
the affected resources of the Web application. This process enables you to quickly develop applications with a
minimum of compilation overhead. Whether a single page or the entire website is recompiled depends on the
percentage of changes made to the resources.

Compilation Dependencies

ASP.NET compiles files in a particular order when a request is made to an application, The first items to be
compiled are referred to as the top-level items. After the first request, the top-level items are recompiled only if

Developing a Web Application

dependency changes. Top-level items include the App_GlobalResources folder, App WebResources folder,
profile properties, App_Code folder, and Global.asax file. After the top-level items are compiled, ASP.NET
compiles additional items. These items include the App LocalResources folder, individual ASP.NET pages
(- aspx files), ASP.NET user controls (. ascx files), ASP.NET HTTP Handlers {. ashx files), and ASP.NET HTTP
modules (. asmx files) as well as themes, master pages, and other source files.

Using the Merge Tool

The ASP.NET Merge tool (Aspnet_merge.exe) enables you to combine and manage assemblies that are
created by the ASP.NET Compilation tool {Aspnet_compiler.exe). The ASP.NET Compilation tool enables
you to compile an ASP.NET Web application for deployment to a target location, such as a production server.
The ASP.NET Merge tool works on assemblies that have been created by using ASP.NET version 2.0 or
advanced versions. It creates one assembly for each content folder in the target website, or it creates one
assembly for each content file. It also gives you additional flexibility for deployment. The Merge tool enables you
to do the following tasks: ‘

Q Creating one assembly for the whole website

O Creating an assembly for each website folder, and adds a prefix to the assembly name
0 Creating a single assembly for just the website Ul elements, such as pages and controls
The syntax for using the Merge tool is as follows

asnﬂet_merge £-7] R TP . e
..-___-m'licauonpath S T T

Summary

In this chapter, we have covered some important aspects of developing a Web application, such as how to
specify the location of a Web application by using the File System, HTTP, and FTP options. This chapter also
focuses on server controls, page directives, provider models, and coding models. It also describes the concepts of
code sharing and compilation, required for developing Web applications. We also discussed a new tool
introduced in ASP.NET 3.5 for compilation known as the Merge tool.

In the next chapter, we discuss about the structure and state management concepts related to an ASP.NET Web
application.

Quick Revise
Q1. Which protocol is used to host the site on the remote IIS server in Visual Studio?

1. HTTP
2. FIP
3. SOAP
4. TCP/IP
Ans: HTTP
Q2. Which of the file type is not managed by ASP.NET?
1. .asax
2 .od

601

Chapter 15

Ans:

Q3.
Ans:

Q5.

Q6.
Ans:

Q.10.

3. .compile

4 .edx

.cdx

What do you understand by ASP.NET page directives?

ASP.NET page directives are instructions to specify optional settings, such as registering a custom
control and page language. These settings are used to describe how ASP.NET Web pages (.aspx) or User
control (.ascx) pages are processed by.NET Framework.

Is it necessary to place page directives at the top of the file?

No

Mention page directives of ASP.NET?

ASP.NET 3.5 pages consist of the following directives:

@ Page

@ Control

@ Import

@ Implements

@ Register

@ Assembly

@ Master

@ WebHandler

. @ PreviousPageType

10. @ MasterType

11. @ OutputCache

12. @ Reference

What is the functioning of providers in ASP.NET?

Providers work as a bridge between Data Stores and ASP.NET Services.

What is the drawback of single-file code model?

Drawback of the single-file code model is that writing code in a single file results in difficult-to-read Web
pages that mix presentation (HTML) with functionality (code). This drawback is specifically evident
while developing complex applications.

What is the function of membership provider and which membership provider is used ASP.NET by
defauit?

The Membership provider stores the user names and passwords. The default membership provider is
AspNetSqlMembershipProvider. :

0P NS U AW N e

The @ Control directive is used infiles?
1. .aspx

2, .asex

3. Global.asax

4. .master

.ascx

How can you register IIS server in ASP.NET 3.5?
To register IIS server in ASP.NET 3.5, run the Visual Studio 2008 command prompt as an administrator
and use the aspnet_regiis -1 syntax.

16

Application
Structure and State

If you need information o See page:
Structure of an Application

604

608

Postback

614

Chaptoer 16

The structure of a Web application includes three main concepts: application domain, application lifetime, and
application directory structure. Apart from these concepts, a Web application also contains a component called
the Global.asax file. The Global.asax file contains the code for the events that are raised when the
application is executed. Basically, an ASP.NET Web application comprises files, pages, handlers, and executable
code, which are invoked from the virtual directories of a Web server.

State of a Web concept refers to the status of a Web application at any instant of time. State of the Web
application is associated with its runtime. Preserving application state ensures that the changes made by a user
(such as the products selected and saved in the shopping cart in a case of any online shopping website) are
persisted whenever a page is reloaded. States are further categorized into several types depending on the nature
of information they preserve. These types include application state, session state, and view state.

In this chapter, we describe the structure of a Web application and explain the concept of states. We also get to
know about the Global.asax file, which is used to implement application-level and session-level events. In
addition, we learn how to add objects to it. The chapter concludes with a detailed discussion about HTTP
Handlers used to handle user requests for Web application resources, and postbacks used for sending data back
to the server for processing.

Structure of an Application

As already stated, the structure of an ASP.NET Web application includes the concepts of application domain,
application lifetime, and application directory structure. Application domain is a virtual boundary inside which
an application runs, while application lifetime is the span of time for which an application domain exists.
Application directory structure, on the other hand, specifies the directory structure that organizes the various
entities associated with an application, such as references, resources, and code files, in separate directories. Each
directory possesses a well-qualified name that reflects what is stored inside it. Now, let’s explore all these
concepts one by one,

The Application Domain

604

To understand the concept of domain, we first need to understand how a Web application works after it is
deployed. We deploy a Web application created in ASP.NET on a Web server, such as the Internet Information
Services (IIS), and Windows Activation Services (WAS). The client browser sends a request for the Web
application to the Web server, which further passes the request to the ASP.NET worker process. The worker
process then separates the code execution into different application domains with the Web services and Web
pages hosted on the same virtual directory. These Web services and Web Pages executes in the same application
domain, whereas, the Web services and Web pages hosted on different virtual directories executes in different
application domains. An application domain is actually implemented by Common Language Runtime (CLR),
and the prime objective of the application domain is to prevent concurrently running applications from entering
into each other’s domain.

ASP.NET runs within a process known as ASP.NET worker process. The ASP.NET worker process allows ASP.NET
3.5 Web appilications fo run on the Web server. it enables differert assembiies of a program to work in conjunction with
each other.

What do we gain from the concept of the application domain? The most vital benefit of application domains is
the independent execution of Web applications. None of the applications can access the in-memory resources of
other simultaneously running applications. The main component that helps in the independent execution of
applications is a virtual directory. In case of an IIS Web server, the virtual directory with all its subdirectories is
created in the IIS console. Some of the primary application entities that are stored in the virtual directory are:

O Web pages—Files that are used as Web Form pages in the Microsoft NET environment. The extension of
these files is . aspx.

& Web services—Files that enable you to share information with applications on other computers and
platforms using XML Web services. These files have the . asmx extension.

Application Structure and State

Q0 Code-behind files—Source code files that contain code for an ASP.NET page in a separate class file. The
source code files have the .vb extension if the files are coded in VB,

0 Configuration files—Configuration files, such as web ., conf 1 which stores the configuration settings of a
Web application and machine. config which store the configuration settings of the machine on which the
Web application is running.

O Global.asax files—TFiles that contain event handlers to respond to events, such as starting of an ASP.NET
Web application for the first time. :

In addition, there are other resources in the virtual directory, such as images and XML files. The virtual directory

encapsulates all these resources of an ASP.NET Web application and forms an application domain whenever the

application is called for the first time.

The Application Lifetime

Application lifetime refers to the time span for which an application domain persists. Now, this does not mean
that application lifetime is equivalent to the time span for which an application runs. In fact, an application
domain can shut down in several circumstances, including specific error conditions, configuration changes, or
Web server shut-down. Therefore, an application’s runtime might encounter repeated restarting of the
application domain. The application domain might require a restart under the following circumstances:

Excess requests in the queue

Excess memory usage by an application

Lengthy lifetime of the application

0DOO0OD

Modifications in the web.config file
O Replacement of existing Dynamic Link Libraries (.dll files) or Web files

It is not that the shut-down of an application domain is bad on any count. As a matter of fact, developers
deliberately include specific settings in the machine.config file to ensure that the application domain is recycled
at specific time intervals. This helps in monitoring the performance of the application.

The Appiication Directory Structure

An efficiently designed directory structure plays a key role in Web application development. It segregates all the

code and resources used by an application ameng different directories, thereby enhancing the productivity of

developers. Let’s take an example to illustrate this. Suppose you are developing a Web application, the code for
which has been divided under different modules, with each module handled by different tearm members. In such

a scenario, it will be easier for you to just put the code, developed by your team members, in different directories

and run the application. In this way, the debugging process can also be performed in a more structured manner.

Another advantage of using a directory structure is that it enhances the reusability of an application. It becomes

easy for you to upgrade the application in the long run because of its structured code files and application

resources.

In the 1.x version of ASP.NET and eatlier, there was only one default directory and bin for an application and

you had to create your own custom directories, if any. However, in ASP.NET 2.0, there is support for a default

directory structure, which provides several built-in directories for Web applications. These directories are as
follows:

0O Bin-—Contains compiled .NET assemblies, containing precompiled Web pages and Web service classes.
You can directly use these assemblies in your application, thereby reducing the amount of code that needs
to be written for an ASP.NET Web application.

Q App_Code—Contains source code files, compiled dynamically, to be used in the ASP.NET Web application.

O App_GlobalResources—Contains the resources that can be used in all Web pages as well as the controls
of the ASP.NET Web application.

Q0 App_LocalResources—Contains the resources that are accessible only to a specific Web page of the
ASP.NET Web application.

Chapter 16

O App_WebReferences—Contains the references to the Web services used by the ASP.NET Web
. application.

0O App_Data-—Contains the database and XML files of the ASP.NET Web application.

O App_Browsers—Contains browser definition files that identify browsers for different ASP.NET Web
applications.)

O App_Themes—Contains the themes used by the ASP.NET Web application. The themes can be applied to a
control or Web page, or to the entire ASP.NET Web application.

Next, let’s discuss the Global asax application file, which is also known as the ASP,NET application file.

The Global.asax Application File

606

The Global.asax file resides in the root directory of an ASP.NET Web application and is also called the
ASP.NET application file. This file contains the code that is executed when certain events, such as start of an
application or error in an application, are raised by an ASP.NET Web application.

Events and states, such as session state and application state that are specified in the Global.asax file, are
applied to all the resources of the Web application. For example, if an application state variable is defined in the
Global.asax file, then all the . aspx files within the root directory can access the variable.

The code in the Global.asax file is written in the same way as in Web forms; the only difference is that the
code written in the Global.asax file does not contain HTML or ASP.NET tags. Instead, the code in this file
contains methods with predefined names.

The Global. asax file is created either in Notepad or as a compiled class, which is deployed as an assembly in

the \bin directory of the ASP.NET Web application. Now, let’s create an application named GlobalVB, which

uses the Global.asax file to display the date and time. You can find the code for the GlobalVB application in

the Code\ ASP.NET\Chapter 16\ GlobalVB folder on the CD. Listing 16.1 shows the code of the Global .asax

file:

Listing 16.1: Showing the Code for the Global.asax File
< AppYication 'L_aﬂgu_agez_‘!vg"_ Moy

At b il ..

To add a Global. asax file to an application, first right-click the name of the website in Solution Explorer and
select the Add New Item option, and then after selecting the Global Application Class template on the Add New
Item dialog box and click the Add button.

Running the application with the preceding listing opens a Web page that displays the date and time, using the
Global.asazx file, as shown in Figure 16.1:

{ This page was execnted 006/19:2008 103315 AM
Lbone T @ intemet Protecied Mode 0n w10 v)

s e

Figure 16.1: Qutput of the Global.asax File

The new Global.asax file added to the ASP.NET Web application contains empty event handlers for the
commonly used application events, such as the start and end of an application. The code for the event handlers
is inserted in the appropriate method of the Global.asax file. The name of the method for which an event
handler is created should be similar to the name of the event occurring in the Web application. For example, the

Application Structure and State

Application OnsStart() method is called when the Application_Onstart event occurs in the ASP.NET
Web application,

The various methods corresponding to the events that occur in the Global.asax file are invoked in the

following order when an ASP.NET Web application starts:

O Application BeginRequest () —Invoked when a request for the Web application is received

O Application AuthenticateRequest () —Invoked just before the authentication of user credentials is
performed. You can use this method to specify your own authentication logic before the authentication
process begins

O 2Application AuthorizeReguest () —Invoked when the current user’s credentials are successfully
validated. You can use this method to assign special permissions to the user

O aApplication ResolveRequestCache () —Invoked when the ASP.NET Page Framework completes the
execution of authorization request. This method is mainly used to handle the output caching of the
application that renders the cached HTML without executing the code again

0 BApplication AcquireRequestState () —Invoked just before the session information is retrieved for
the current client request

O Application PreRequestHandlerExecute () —Invoked before the ASP.NET page framework begins
te run the HTTP Handler to handle a request

O Application PostRequestHandlerExecute () —Invoked after the HTTP Handler has finished
executing the request

O Application ReleaseRequestState () —Invoked just before the session information is serialized from
the Session collection for the next request

O Application UpdateRequestCache () —Invoked just before the information for handling the request is
added to the output cache of the Web page

O Application EndRequest () —Invoked at the end of the request

The methods corresponding to the events that are not invoked with each user request are:

O Application Start () —Invoked when an ASP.NET Web application starts and an application domain
is created. An ASP.NET Web application starts when any resource in the application is requested.

O Session_Start () —Invoked when a session is started. A new session starts each time a new user requests
a page.

U Application Frror () —Invoked when an error occurs. You can use this methed to handle errors on the
ASP.NET Web application instead of using the web . config method.

O Session End() —Invoked when a user's session expires.

O Application End(} —Invoked when an application ends or terminates. The application terminates when
there are no more active sessions.

O BApplication Disposed() —Invoked when an application is destroyed.

The Global.asax file is also used to declare the data that is available across different browser sessions. This

process is known as application state and session state management.

There are some similarities between an ASP.NET Web page and the Global.asax file. Similar to an ASP.NET

page, the Global.asax file is compiled when a request for any resource in an ASP.NET Web application is

made for the first time. Another similarity is that when changes are made to the Glcbal.asax file, ASP.NET

Framework detects the changes and recompiles the file. New requests are then directed to the recompiled

Global.asax file.

Now that you are familiar with the Global.asax application file, let’s discuss about the states of an

application.

607

Chapter 16

Using States

State is quite an innovative concept in Web development because it eliminates the drawback of losing state data
due to reloading of a Web page. By using states in a Web application, you can preserve the state of the
application either at the server or client end. The state of a Web application helps you to store the runtime
changes that have been made to the Web application. For example, as already described earlier, a change in the
data source of the Web application might be initiated by a user when he/she selects and saves some products in
the shopping cart. If you are not using states, these changes are discarded and are not saved. You may think that
the whole concept of storing states is optional. However, under certain circumstances, using states with
applications is imperative. For example, it is necessary to store states for Web applications, such as an e-
commerce shopping site or an Intranet site of a company, to keep track of the requests of users for the items they
have selected on the shopping site or the days requested for vacation on the Intranet site.

There are various methods for storing state information. These include the following:

4 Hidden Fields— This control is not visible when a Web application is viewed in the browser. The content of
* the control is sent in the HTTP Form collection control along with the values of other controls to the server
on page reloads. This control acts as a storage area for any page-specific storing information.

O Cookies—These are text files that store data, such as user ID and preferences at the client end. When a
browser requests a Web page again, the cookie is sent along with the request. The Web server then retrieves
the information from the cockie.

O Query strings — These are the information strings added at the end of a URL to maintain the state of a Web
application. However, using query strings is not secure because their values are exposed to the Internet
through the URL.

In all these methods, state information is stored at the client end. However, the state of an ASP.NET Web

application can also be on a Web server. Saving the state of the application on the Web server is safer than saving

it on a client machine. The following are some of the methods used to save state information on the Web server:

D Application state—Stores application data not frequently modified by users. An object of the
HttpaApplicationState class is used to store the state of an ASP.NET Web application.

O Session state —Stores information specific to a user session. User session refers to the duration for which a
user uses a website. An object of the HttpSessionState class is used to store the session state for each
ASP.NET Web application that is executed.

Q Profile Properties —Stores the application state when the information to be stored is too large. The database
can be used along with cookies to store the application state.

Now, let’s discuss the various state types: application state, session state, and view state.

Application State

Application state is used to store data corresponding to all the variables of an ASP.NET Web application. The
data in application state is stored once and read several times. Application state uses the
HttpApplicaticnstate class to store and share the data throughout the application. You can access the
information stored in an application state by using the HttpApplication class property. Data stored in
application state is accessible to all the pages of the application and is the same for all users accessing the
application. The HttpApplicaticnstate class provides a lock, method, which you can use to ensure that only
one user is able to access and modify the data of an application at any instant of time.

Session State

Each client accessing a Web application maintains a distinct session with the Web server, and there is also
specific information associated with each of these sessions. Session state is defined in the <sessionState>
section of the web.config file. It also stores the data specific to a user session in session variables. Different
session variables are created for each user session. In addition, session variables can be accessed from any page
of the application. When a user accesses a page, a session ID for the user is created. The session ID is transferred
between the server and the client over the HTTP protocol using cookies.

Application Structure and State

View State

View state stores page-specific information, when a page is posted back to the server. When a page is processed,
the current state of the page and its controls is hashed (transforming a sequence of characters into a fixed-length
value} into a string and saved as a hidden field on the page. Such a state of the page is called view state.

The ViewState property is used to save the view state of each control used in a page. If the ViewState
property is not used, then the values written in the controls are not retained when the page is reloaded.

The hidden field of a view state is placed at the top of each page. The source code to maintain a ViewState
contains an input tag with three attributes: type, name, and value. The value of the type attribute is set to
hidden. The name attribute contains the name of the controls for which the ViewState property is used, and
the value attribute specifies a string value, which is not in readable format. The string value is a combination of
control values that are used in a Web page. When the Web page is reloaded, the server reads the values in the
value attribute and restores them when the page is sent back to the client.

View state is maintained in a Web page by default. You can include the following directive at the top of the Web

page to disable its view state:

i <IN Pl Enabtevi ewstate: = Y False s o 1 Foldrie sl 2 B L

To disable the view state of a Web control, add the following attribute to the control:
EnableviewState ="false™ - . ..° . . suiiiazs e B

Using Application State, Session State, and View state

Let’s create a sample Web application, StateImplementationvB, which uses all the three state types—
application, session, and view. You can find the code for the StateImplementationVe application in the
Code\ ASP.NET\ Chapter 16\StateImplementationVB folder on the CD. After creating the Web application,
follow these steps:

B A

1. Add the code in the Default.aspx page, as shown in Listing 16.2:
Listing 16.2: Showing the Code for the

bject, AS ‘System.gventArgs) |

g = Viewstate("iten") Tostring - =~

<Jseripts,
<html>. oo

fon="Default. aspx" wethod="post? runat="server’s
decoration: under]ine">view Stgtexisnm;stmngﬁshr >

- <body” bgcoTora " #EEFERE">:
" <form id="frmviewstate
<strofgr<span style="text
<br fy oo
Enter: Your: Name

i 4nbspi dnbsp:. Sabsp:: dbsp;

4nbsp; dmbsp; Rnsk: &ebsp:: Sobsp; dnbsp;- Sabsp;: Snbapr: &nbsbi bbsp: Gnbsp; |
“Snbsp; Snbsp; &hbsp; dnbsp; PR A s e e
<aspiputton ID="btnsubmit' Text="submit" onclick="brtrSubmit Click" runat="¢erver™ /» =

609

Chapter 16

asp:Labe’ 10="Label3"
: <,/form> -
i bty
</htmls> : : -
2. Next, add the Global.asax file in the StateImplementatlonVB Web application and add the code in
the Global.asax file as shown in Listing 16.3:
Listing 16.3: Showing the Code for the Global.asax Flle

R App‘hcatwn Languages="vs"

<fseripts
3. Now, run the application. Figure 16.2 shows the output:

bw o L S loulimem | Dotk 08 RS v-
Figure 16 2: Output of the Statelmplemontatnon Web Application
4. Now, enter a name in the Enter Your Name textbox and click the Submit button. This displays the name as a
Label control.
5. Next, refresh the page to reload it. Figure 16.3 shows the outpat after reloading the page:

610

Application Structure and State

[T

Tone B ii,munmqwmmm T ke -

F|gure 16.3: Output after Refreshing the Page

As shown in Figure 16.3, the name that you entered in the text box appears as a label, indicating that view state
is maintained. The Number of last visits value also increases by 1, indicating that application state is maintained.
However, the string 1 am the user!! remains unchanged. This denotes the property of session state, whose value
does not change throughout a session.

Next, we discuss the concept of HTTP Handlers in Web applications.

HTTP Handlers

HTTP Handlers, as the name suggests, handle user requests for Web application resources. They are the
backbone of the request-response model of Web applications. For each user request type, there is a specific event
handler to handle the request and send back the corresponding response object.

Each user request to the 115 Web server flows through the HTTP pipeline, which refers to a series of components

(HTTP Medules and HTTP Handlers) to process the request. HTTP Modules act as filters to process the request

as it passes through the HTTP pipeline. The request, after passing through the HTTP Modules, is assigned to an

HTTP Handler that determines the response of the server to the user request. The response then passes through

the HTTP Modules once again and sends back to the user,

You can define HTTP Handlers in the <httpHandlers> section of a configuration file. The <add> element tag

is used to add new handlers and the <remove> elements tag is used to remove existing handlers. To create an

HTTP Handler, you need to define a class that implements an THttpHandler interface. The two methods of the

IHttpHandler interface are;

O ProcessRequest () —Invoked when a user request is received. It processes the request using the
HttpContext object, which is passed as a parameter.

O IsReusable () —Determines whether the HTTP Handler object, accessed using the ProcessRequest ()
method, can be reused. The HTTP Handler object can only be reused if the IsReusable () method returns
a true value. The object is discarded when the HTTP Handler object returns a false value.

Creating an HTTP Handler Application
To understand the concept of HTTP Handlers better, let’s create a sample HTTP Handler Web application, called
HttpHandlerVB, which sends a test message in response to an HTTP request. You can find the code for the
HttpHandlerVB application in the Code\ ASP.NET\Chapter 16\ HttpHandlerVB folder on the CD. For this,
you first need to create a class file Cust omHandler, and add the code shown in Listing 16.4:
Listing 16.4: Showing the Code for the Customiandler Class File

Imports Microsoft. V’lsuﬂﬂa!i‘lc e TR
Namespace CustomHTTR :

611

Chapter 16

Public Class custemtandler -
Implements . Iuttpamdhr :

Public readonly Property” Is&eusabh{) A

System.web. Iﬂtmdltn EsRedsable .=

Get:
Lol RETUrR True

gnd Get

b End Prap!ﬂ:y :) : : T

public sub Process st(mi context As Systam ﬂeh Httpcouttxt) Imp'imm:s

System.web. JHt Ter.Processhequest
Mm Response As HEtpResponss = context Respnnse
ngspanse wrwte{"ﬁtxb«odwbsmie HTT? Handlemfnbdbudyx/htmb")

End sub

End Class o

L End Naméspace

Next, add the code in the <system. web> section of the web. conflg flle, as shown in Llstmg 16.5:

Listing 16.5: Showing the Code for the web . confi 1g Flle

<compilation debugs"true"/s :
- <authent~icat1m mbdes _'nddws"i>

In the precedmg]1st1ng, we have spec1f1ed the path of the file that launches the HTTP Handler, as
CustomHttp.test. Now, let’s run the application. When you run the application, the Default page opens in
the browser window. You need to type the CustomHtty. test filename at the end of the URL and press the
ENTER key to initiate the custom HTTP Handler, as shown in Figure 16.4;

TR

P View Favortes Took Help
a e ngwmywm

| Sample HTTP Handler

Cbeme T o ﬁm:mu”’mmdmd:oﬂ K% ~
i . L oiEn e 0 i

Flgure 16 4 Output of the HttpHandler Application

Generic Handlers
HTTP Handlers were somewhat tough to understand and create in the previous versions of Visual Studio such
as 2002 and 2003, because these versions did not provide any user-friendly methods for creating the handlers.
With Visual Studio 2005, however, things changed and it became easy to create and add HTTP Handlers to an
application. All you need to do is simply add the Generic Handler file type in your application. Creating a
Generic Handler is the easiest way to create a new HTTP Handler. We learn how to do this in the next section.

Creating a Generic Handler Application

Let’s now create an application, named GenericHandlerVB, to understand the use of Generic Handlers. You
can find the code for the GenericHandlervs application in the Code\ASP.NET\Chapter
16\ GenericHandlerVB folder on the CD. ' '

After creating the application, open the Add New Item dialog box by right-clicking the application name in the
Solution Explorer window. In the Add New Item dialog box, select the Generic Handler template from the
Templates pane, enter the name GenericHandler.ashx in the name field, and finally click the Add button, as
shown in Figure 16.5: .

612

Application Structure and State

= Web Form
I ALK Chara Bahaior
| X M- prabies WCF Service ‘4] Brewses Fie e
|l Clwss Dageam RCrptal Bapern 1 DatSet
. 8 Generic Handiar) Globl &k ation Class 4 HTML Page. A
| e e AN b 501 e 2 Repont g
" | e Report izaet Rescurce File 2 St M g 2
| sin Fs 7 5L Serv Datubore A style She jl
E i‘.'NF* W Srnce + Wb Canfiguation File _\!i 4
| b Sence o L Fe 0 Sshera 5 E

o

g %
E
g
#

Figure 16.5: The Add New Item Dialog Box
A file with the .ashx extension is added to the Solution Explorer window. Now, add the code in the
GenericHandler.ashx file, as shown in Listing 16.6:

Listing 16.6: Showing the Code for the GenericHandler.ashx File
e e . - nerieHandte

Run. the hpplicéﬁdn after adding the code shown in Listing 16.6 in the GenericHandler.ashx file. Figure 16.6
shows the output:

613

Chapter 16

Fle Bt Ve Favorie Took Hep)
g

‘| Hello there. Select your Favorite Feature of ASP NET 3.5

R R PP PR TP ék;;ﬁl‘ tecied Mo ‘-’Jn wron

Figure 16.6: Output of the GenericHandler Application
In the Web browser shown in Figure 16.6, when you click the drop-down list, you see a list of ASP.NET 3.5
features. Select a feature of ASP.NET 3.5 from the drop-down list and click the Lockup button. In our case, we
have selected the WCF feature of the ASP.NET 3.5, as shown in Figure 16.7:

Fr. EM Ve Farorites Took Melp

e T iy ™ oy
Figure 16.7: Selecting a Feature of ASP_.NET 3.5 from Drop-Down List
This displays the selected feature, as shown in Figure 16.8:

BBl Lovedoeranens s :
: Hi, vou picked WCF as yoor finoriee feanwe

e B PoasiioieOn R -

Figure 16.8: Qutput After Selacting the Feature
After understanding the concept of HTTP Handlers and learning how to create them in an application, we now
move on to know postback.

Postback

Postback is the process of sending the data back to the server for processing. This is done to authenticate the
login and password of a client or other such tasks that a client cannot perform on its own. ASP.NET provides a
tich framework for handling postbacks from ASP.NET Web Ppages. Postback includes cross-page posting, which
is the name given to the process of receiving the response of a request by the server on another page. Now, let’s
look into the concept of cross-page posting in detail.

Cross-Page Posting

Normally, when we post back data to the server, the server sends the response back to the same page. If we want
to receive the response on another page, we use the concept of cross-page posting,

Creating a Cross-Page Posting Application
Let’s create an application named CrossPagePostbacksVB to understand the working of cross-page posting.
You can find the code for the CrossbPagePostbacksVB application in the Code\ASP.NET\Chapter
16\ CrossPagePostbacksVB folder on the CD. Now, follow these steps:

614

Application Structure and State

1. Add the code in the Default.aspx page of the CrossPagePostbacksVB Web application, as shown in
Listing 16.7: LT
Listing 16.7: Showing the Code for the Default .aspx Page

In the pfefédmg listing, we have added a TextBox control, a Calendar control, two Button controls, and a Label
control. The Butttonl control is used to postback the data on the same page and the Button2 control is used
to postback the data on another page (cross page). After adding the code in the Default . aspx page, the design

view of the page appears, as shown in Figure 16.9:

k1]
7
14
21

" Crons Page Posi Back

Figure 16.9; The Design View of the Default.aspx Page
Instead of adding the code, you can also add the controls with the help of the Toolbox.

2. Now, add another page named Default2.aspx in the application, and add the code in it, as shown in
Listing 16.8:

615

Chapter 16

616

Listing 16.8: Showing the Code for the Default2.aspx Page
g i Language="VR" AutDEventwireup="False” Coderi

£ hiwl PUBLIC *-//WiC/ /DT J0TC

3. wa, double-click the Same Page Postbacks bﬁttbn.(Figﬁre 16.9) ar{d add the code ls‘hown in Listing 16.9, for
the button click event, in the code-behind file of the Default.aspx page:
Listing 16.%: Showing the Code for the efault . aspx .vb File

4 Noﬁr, add the code shown in Listing 16.10, for the page load event in the code—bel';ind file of the
Defaultl.aspx page:
Listing 16.10: Showing the Code for the Default2.aspx. vb File

endsub
CiEnd Class o ; B ER : R TR At :
5. Now, run the application and see the output. However, before you do that, set the De fault aspx page as
your start up page; otherwise, some errors may occur in the application at runtime. When you run the
application, the first page appears in your browser as shown in Figure 16.10:

o i F

e B I e 2]

i f

Ry Locat moanct I Foected boda ORI v

Figure 16.10: First Page of the Application

Application Structure and State

6. Enter your name in the TextBox control and select the date in the calendar that you want to display. When
you click the Same Page Post Back button, the name and the selected date displays on the same page, as
shown in Figure 16.11:

n..n T o ’ iymlmmummmdmm R - E

Figure 16 11 Showing Postback on the Same Page

7. To demonstrate cross-page postback, enter your name, select a date, and click the Cross Page Post Back
button. The name and selected date dlsplays on another page, as shown in F1gu.re l6.12:

me|mmw

TR gt e

Flgure 16.12: Showmg Cross-Page Postback

e S s R S

Summary

This chapter discusses some important aspects of Web development in ASP.NET, such as the directory structure
of an application and the three states in ASP.NET: application, session, and view. In addition, this chapter also
describes the concepts of Global . asax file, HTTP Handlers, and postback data.

The next chapter will familiarize you with some common controls, such as Buttons, Textboxes, Labels, and
Literals, used for Web programming in ASP.NET 3.5.

Quick Revise
Q1. Which of the following files is knows as ASP.NET application file?
1. machine.config
2. web.config
3. Global.asax
4. Default.aspx
Ans: Global.asax

617

Chapter 16

618

Q2.

Ans:

Q3.

A

Q5.

Ans:

Ans:

Q7.

R

2

Q10.

What is the procedure to add Global.asax file in a Web application?

To add a Global.asax file in an application, you have to perform following steps:

1. First right-click the name of the website in Solution Explorer.

2. Select the Add New Item option, and then after selecting the Global Application Class template on
the Add New [tem dialog box and click the Add button. :

Application state uses theclass to store and share the data throughout the

application.

1. HttpApplicationstate

2. HttpApplication

3. ViewState

4. Application_OnStart

HttpApplicationstate

In which file, the session state is defined? Please also mention the section name.

Session state is defined in the <sessionState> section of the web.config file.

What are HTTP Handlers?

HTTP Handlers handle user requests for Web application resources. They are the backbone of the

request-response model of Web applications. For each user request type, there is a specific event handler

to handle the request and send back the corresponding response object.

What is postback?

Postback is the process of sending the data back to the server for processing. This process is used to
authenticate the login and password of a client or other such tasks that a client cannot perform on its
own.

What is the difference between application demain and application lifetime?

Application domain is a virtual boundary inside which an application runs, while application lifetime is
the span of time for which an application domain exists.

What is application directory structure?

Application directory structure specifies the directory structure that organizes the various entities
associated with an application, such as references, resources, and code files, in separate directories.

What is the benefit of using the concept of the application domain?

The benefit of application domains is the independent execution of Web applications. None of the
applications can access the in-memory resources of other simultaneously running applications.

In what situations, the application domain might require a restart?

The application domain might require a restart under the following situation:
O Excess requests in the queue

Excess memory usage by an application

Lengthy lifetime of the application

Modifications in the web.config file

Replacement of existing Dynamic Link Libraries (.dil files) or Web files

oO0oQ

